Skip to main content
Log in

Profiling of culture-induced variation in sugarcane plants regenerated via direct and indirect somatic embryogenesis by using transposon-insertion polymorphism

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Transposable elements constitute a large fraction of plant genomes, and changes due to TE mobilization have provided powerful genetic and molecular tools. Somaclonal variation is a common phenomena caused either by various extrinsic and intrinsic factors related to in vitro culture or transposon activity has been detected under cell culture or tissue culture milieu. In this study, variability among direct somatic embryogenesis (DSEM) and indirect somatic embryogenesis (ISEM) regenerants of sugarcane cv. CoC-671 was studied using Ac transposon insertion polymorphism. A total of 254 amplification products were obtained ranging from 0.5 Kb to 2 Kb. The DNA profile revealed genetic polymorphism among the ISEM regenerants compared to DSEM regenerants. There was n uniform insertion pattern of the Ac like transposons among the DSEM regenerants, whereas it was variable in case of ISEM regenerants. The results on the insertion polymorphism of Ac homologous regions among the ISEM regenerants indicate that the transposition occurred during in vitro culture and that this marker system could be useful in profiling of genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen JL (2000) Transposable element contributions to plant genome evolution. Plant Mol Boil 42:251–269

    Article  CAS  Google Scholar 

  • Burner D M, Grisham M P (1995) Induction and stability of phenotypic variation in sugarcane as affected by propagation procedure. Crop Sci 35:875–880

    Article  Google Scholar 

  • Chang R Y, O’Donoughue L S, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781

    Article  CAS  Google Scholar 

  • Chowdhury M K U, Vasil IK (1993) Molecular analysis of plants regenerated from embryogenic cultures of hybrid sugarcane cultivars (Saccharum spp). Theor Appl Genet 86:181–188

    Article  CAS  Google Scholar 

  • Desai NS, Suprasanna P, Bapat VA (2003) Improvements in somatic embryogenesis, analysis of somaclonal variation and genetic transformation in sugarcane In: Proc Int Seminar on “Sugarcane Genomics and Genetic transformation Vasantdada Sugar Institute Pune, India. Pp 28–30

  • Desai NS, Suprasanna P, Bapat VA (2004) A simple and reproducible method for direct somatic embryogenesis from immature inflorescence segments of sugarcane. Current Science 87(6): 764–768

    Google Scholar 

  • Edwards D, Coghill J, Batley J, Holdsworth M, Edwards K J (2002) Amplification and detection of transposon insertion flanking sequences using fluorescent Mu AFLP. Biotechniques 32:1090–1097

    CAS  PubMed  Google Scholar 

  • Ellis THN, Poyser S, J Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260: 9–19

    CAS  PubMed  Google Scholar 

  • Frey M, Stettner C, Gierl A (1998) A general method for isolation in tagging approaches: amplification of insertion mutagenized sites (AIMS). Plant J 13:717–721

    Article  CAS  Google Scholar 

  • Fukuchi A, Kikuchi F, Hirochika H (1993) DNA fingerprinting of cultivated rice with rice retrotransposon probes. Japan J Genet 68: 195–204

    Article  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends in Plant Science 3: 181–187

    Article  Google Scholar 

  • Grzebelus D (2006) Transposon insertion polymorphism as a new source of molecular markers. J Fruit Ornam Plant Res vol 14(Suppl 1): 21–29

    CAS  Google Scholar 

  • Guiderdoni E, Demarly Y (1988) Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tiss Organ Cult 14:71–88

    Article  Google Scholar 

  • Guiderdoni E, Merot B, Eksomtramage T, Paulet F, Feldmann P, Glaszmann J-C (1995) Somatic embryogenesis in sugarcane (Saccharum species) In: Bajaj Y P S (ed) Biotechnology in agriculture and forestry vol 31 Somatic embryogenesis and synthetic seed II. Springer, Berlin, Pp 92–113

    Google Scholar 

  • Heinz DJ, Krishnamurthi M, Nickell LG, Maretzki A (1977) Cell tissue and organ culture in sugarcane improvement pp 3–17. In J Reinert and YPS Bajaj (eds) Applied and fundamental aspects of plant cell tissue and organ culture Springer Berlin.

    Google Scholar 

  • Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35 231–240

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposon of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 97:7783–7788

    Article  Google Scholar 

  • Hoy JW, Bischoff KP, Milligan SB, Gravois KA (2003) Effect of tissue culture explant source on sugarcane yield components. Euphytica 129:237–240

    Article  CAS  Google Scholar 

  • Irvine JE, Benda GTA, Legendre BL, Machado GR (1991) The frequency of marker changes in sugarcane plants regenerated from callus culture II Evidence forvegetative and genetic transmission epigenetic effects and chimeral disruption. Plant Cell Tiss Organ Cult 26:115–125

    Article  Google Scholar 

  • Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Christopher LP, Grof Bonnett GD, Smith GR (2005) Sugarcane Biotechnology: The Challenges And Opportunities. In vitro Cell Dev Biol-Plant 41:345–363

    Article  CAS  Google Scholar 

  • Lakshmanan P (2006) Somatic embryogenesis in sugarcane- an addendum: sugarcane biotechnology: challenges and opportunities. In vitro Cell Dev Biol-Plant 42:202–205

    Google Scholar 

  • Lourens A G, Martin F A (1987) Evaluation of in vitro propagated sugarcane hybrids for somaclonal variation. Crop Sci 27:793–796

    Article  Google Scholar 

  • Manjunatha BR, Suprasanna P, Desai NS, Bapat VA (2004) Saccharum officinarum Ac like transposon gene partial cds. GenBank (AY644706)

  • Menossi MM, Silva-Filho C, Vincentz M, Van-Sluys M-A, Souza G M (2008) Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development. International Journal of Plant Genomics. doi:101155/2008/458732

  • Merkle SA, WA Parrott, EG Williams (1990) Applications of somatic embryogenesis and embryo cloning. In: SS Bhojwani (Ed) Plant Tissue Culture: Applications and Limitations. Elsevier, Amsterdam. pp 67–101

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures Plant Physiol 15: 473–497

    Article  CAS  Google Scholar 

  • Pouteau S, Huttner E, Grandbastien M A, Caboche M (1991) Specific expression of the Tobacco Tnt1 retrotransposon in protoplasts. EMBO J 7:19111–1918

    Google Scholar 

  • Purugganan M D, Wessler S R (1995) Transposon signatures: speciesspecific molecular markers that utilize a class of multiple copy nuclear DNA. Mol Ecol 4:265–269

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (1990) NTSYSPc Numerical taxonomy and multi variate analysis system version 202 Applied bio statistics New York.

  • Rossi Magdalena, Paula Goncalves Araujo, Marie-Anne Van Sluys (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genetics and Molecular Biology 24(1–4): 147–154

    Google Scholar 

  • Schulman AH (2007) Molecular markers to assess genetic diversity Euphytica 158(3): 313–321

    Article  CAS  Google Scholar 

  • Suprasanna P, Desai NS, Sapna G, Bapat VA (2006) Monitoring genetic fidelity in plants derived through direct somatic embryogenesis in sugarcane by RAPD analysis. Jour New Seeds 8(3): 1–9

    Article  Google Scholar 

  • Taylor PWJ, Geijskes JR, Ko HL, Fraser TA, Henry RJ, Birch RG (1995) Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor Appl Genet 90:1169–1173

    Article  CAS  Google Scholar 

  • Todorovska E (2007) Retrotransposons and their role in plant — genome evolution. Biotechnol & Biotechnol Eq 21(3): 294–305

    CAS  Google Scholar 

  • Vettore A L, da Silva F R, Kemper E L, Arruda P (2001) The libraries that made SUCEST. Genetics and Molecular Biology 24(1–4): 1–7

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suprasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suprasanna, P., Manjunatha, B.R., Patade, V.Y. et al. Profiling of culture-induced variation in sugarcane plants regenerated via direct and indirect somatic embryogenesis by using transposon-insertion polymorphism. Sugar Tech 12, 26–30 (2010). https://doi.org/10.1007/s12355-010-0006-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-010-0006-8

Keywords

Navigation