Skip to main content

Constructing and evaluating a master surgery schedule using a service-level approach

Abstract

In this paper, we consider the problem to build a cyclic master surgery schedule for a case study of a small-to-medium-sized Belgian hospital. The problem considers the objectives of different stakeholders and aims to maximise the adjacency of operating room blocks assigned to an individual surgeon (group) and to optimise the bed capacity usage in the connected downstream units. To account for different sources of uncertainty surrounding the patient admissions and the required bed capacity in the downstream units, we formulate and solve a deterministic optimisation model relying on the service level concept to define higher-than-expected values for the patient demand. The yielded master surgery schedule establishes suitable bed capacity buffers in the downstream ward units, which improve the robustness to variations in the stochastic variables avoiding bed capacity overruns. The model is solved using a hierarchical two-stage procedure as a priority is established between the different objectives. In the first stage only the block adjacency objective is considered, whereas the second stage applies the \({\mathcal {E}}\)-Constraint Method to find a set of solutions lying on or close to the Pareto front, making the trade-off between the usage of the bed capacity and the workload levelling in the hospital wards. The computational experiments provide insight in the (mutual) impact of the different considered objectives from a deterministic and stochastic point-of-view. We show that the scheduling process of surgeons can be improved by using an automated approach. The proposed method increased both the adjacency between OR blocks and the bed capacity usage significantly as all yielded solutions outperformed the master surgery schedule currently in use in the visited hospital. Findings have been derived using both a training and test real-life dataset to assess the resulting schedule robustness properly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abedini A, Li W, Ye H (2017) An optimization model for operating room scheduling to reduce blocking across the perioperative process. Proc Manuf 10(859):60–70. https://doi.org/10.1016/j.promfg.2017.07.022

    Article  Google Scholar 

  2. Adan I, Vissers J (2002) Patient mix optimisation in hospital admission planning a case study. Int J Prod Oper Manag 22(4):445–461

    Article  Google Scholar 

  3. Adan I, Bekkers J, Dellaert N, Jeunet J, Vissers J (2011) Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources. Eur J Oper Res 213(1):290–308

    Article  Google Scholar 

  4. Agnetis A, Coppi A, Corsini M, Dellino G, Meloni C, Pranzo M (2012) Long term evaluation of operating theater planning policies. Oper Res Health Care 1(4):95–104. https://doi.org/10.1016/j.orhc.2012.10.001

    Article  Google Scholar 

  5. Agnetis A, Coppi A, Corsini M, Dellino G, Meloni C, Pranzo M (2014) A decomposition approach for the combined master surgical schedule and surgical case assignment problems. Health Care Manag Sci 17(1):49–59

    Article  Google Scholar 

  6. Banditori C, Cappanera P, Visintin F (2013) A combined optimization-simulation approach to the master surgical scheduling problem. IMA J Manag Math 24(2):155–187

    Article  Google Scholar 

  7. Bekker R, Koole G, Roubos D (2017) Flexible bed allocations for hospital wards. Health Care Manag Sci 20(4):453–466. https://doi.org/10.1007/s10729-016-9364-4

    Article  Google Scholar 

  8. Beliën J, Demeulemeester E (2007) Building cyclic master surgery schedules with leveled resulting bed occupancy. Eur J Oper Res 176(2):1185–1204

    Article  Google Scholar 

  9. Beliën J, Demeulemeester E (2008) A branch-and-price approach for integrating nurse and surgery scheduling. Eur J Oper Res 189(3):652–668

    Article  Google Scholar 

  10. Berbe RG, Gemmel P, Droesbeke B, Casteleyn H, Vandaele D (2008) Evaluation of hospital service level agreements. Int J Health Care 22(5):483–497

    Article  Google Scholar 

  11. Blake JT, Dexter F, Donald J (2002) Operating room managers use of integer programming for assigning block time to surgical groups: a case study. Anesthesia Analgesia 94(1):143–148. https://doi.org/10.1213/00000539-200201000-00027

    Article  Google Scholar 

  12. Bovim T, Christiansen M, Gullhav A, Range T, Hellemo L (2020) Stochastic master surgery scheduling. Eur J Oper Res 285(2):695–711

    Article  Google Scholar 

  13. Cappanera P, Visintin F, Banditori C (2014) Comparing resource balancing criteria in master surgical scheduling: a combined optimisation-simulation approach. Int J Prod Econ 158:179–196

    Article  Google Scholar 

  14. Cardoen B, Demeulemeester E, Beliën J (2009) Sequencing surgical cases in a day-care environment: an exact branch-and-price approach. Comput Oper Res 36(9):2660–2669

    Article  Google Scholar 

  15. Cardoen B, Demeulemeester E, Beliën J (2010a) Operating room planning and scheduling: a literature review. Eur J Oper Res 201(3):921–932

    Article  Google Scholar 

  16. Cardoen B, Demeulemeester E, der Hoeven JV (2010b) On the use of planning models in the operating theatre: results of a survey in Flanders. Int J Health Plann Manag 25:400–414

    Article  Google Scholar 

  17. Chankong V, Haimes Y (2008) Multiobjective decision making: theory and methodology. Courier Dover Publications, Dover

    Google Scholar 

  18. Choi S, Wilhelm W (2014) On capacity allocation for operating rooms. Comput Oper Res 44:174–184

    Article  Google Scholar 

  19. Chopra S (2019) Supply Chain management - strategy, planning, and operation. 7th edn, Pearson

  20. Denton B, Miller A, Balasubramanian H, Huschka T (2010) Optimal allocation of surgery blocks to operating rooms under uncertainty. Oper Res 58(4):802–816

    Article  Google Scholar 

  21. Deschodt M, Boland B, van Grootven B (2015) Report 245 from the Belgian Healthcare Knowledge Center (KCE): Comprehensive geriatric care in hospitals: the role of inpatient geriatric consultation teams. KCE Rep, pp 1–134

  22. Figueira G, Almada-Lobo B (2014) Hybrid simulation optimization methods: a taxonomy and discussion. Simul Modell Pract Theory 46:118–134

    Article  Google Scholar 

  23. Fügener A (2015) An integrated strategic and tactical master surgery scheduling approach with stochastic resource demand. J Bus Logist 36(4):374–387. https://doi.org/10.1111/jbl.12105

    Article  Google Scholar 

  24. Fügener A, Hans E, Kolisch R, Kortbeek N, Vanberkel P (2014) Master surgery scheduling with consideration of multiple downstream units. Eur J Oper Res 239(1):227–236

    Article  Google Scholar 

  25. Gallivan S, Utley M (2005) Modelling admissions booking in elective in-patients into a treatment centre. IMA J Manag Math 16(305):305–315

    Article  Google Scholar 

  26. Guerriero F, Guido R (2011) Operational research in the management of the operating theatre: a survey. Health Care Manag Sci 14(1):89–114

    Article  Google Scholar 

  27. Hall R (2012) Handbook of healthcare system scheduling. Springer, Berlin

    Book  Google Scholar 

  28. Hans E, Wullink G, van Houdenhoven M, Kazemier G (2008) Robust surgery loading. Eur J Oper Res 185(3):1038–1050

    Article  Google Scholar 

  29. Hans EW, Houdenhoven MV, Hulsof PJ (2011) A framework for health care planning and control. Springer, Berlin

    Google Scholar 

  30. Hiles AN (1994) Service level agreements. TQM Mag 6(2):14–16

    Article  Google Scholar 

  31. Houdenhoven MV, van Oostrum J, Wullink G, Hans E, Hurink J, Bakker J, Kazemier G (2008) Fewer intensive care unit refusals and a higher capacity utilization by using a cyclic surgical case schedule. J Crit Care 23(2):222–226

    Article  Google Scholar 

  32. Hwang C, Masud A (1979) Multiple objective decision making - methods and applications. Springer, Berlin

    Book  Google Scholar 

  33. Ishizaka A, Nemery P (2013) Multi-criteria decision analysis: methods and software. Wiley, New York

    Book  Google Scholar 

  34. Khalfalli M, Abdelaziz F, Kamoun H (2019) Multi-objective surgery scheduling integrating surgeon constraints. Manag Decis 57(2):445–460

    Article  Google Scholar 

  35. Kharraja S, Albert P, Chaabane S (2007) Block scheduling: Toward a master surgical schedule. Proceedings - ICSSSM’06: 2006 International Conference on Service Systems and Service Management 1(July 2016):429–435

  36. Kumar A, Costa AM, Fackrell M, Taylor PG (2018) A sequential stochastic mixed integer programming model for tactical master surgery scheduling. Eur J Oper Res 270(2):734–746

    Article  Google Scholar 

  37. Lamiri M, Xie X, Zhang S (2008) Column generation approach to operating theater planning with elective and emergency patients. IIE Trans 40(9):838–852

    Article  Google Scholar 

  38. Lawal AK, Rotter T, Kinsman L, Sari N, Harrison L, Jeffery C, Kutz M, Khan MF, Flynn R (2014) Lean management in health care: definition, concepts, methodology and effects reported. Syst Rev 3(103):1–6

    Google Scholar 

  39. Li X, Rafaliya N, Baki M, Chaouch B (2017) Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming. Health Care Manag Sci 20(1):33–54

    Article  Google Scholar 

  40. Lin G, Yi P, Si L, Zhu T, Jiang X, Li G, Begovic MM (2013) Robustness analysis on electric vehicle energy distribution networks. In: IEEE power and energy society general meeting, pp 1–5

  41. Litvak E, Long M (2000) Cost and quality under managed care: irreconcilable differences? Am J Manag Care 6(5):305–312

    Google Scholar 

  42. Liu H, Cocea M (2017) Semi-random partitioning of data into training and test sets in granular computing context. Granular Comput 2:357–386

    Article  Google Scholar 

  43. Ma G, Demeulemeester E (2013) A multilevel integrative approach to hospital case mix and capacity planning. Comput Oper Res 40(9):2198–2207. https://doi.org/10.1016/j.cor.2012.01.013

    Article  Google Scholar 

  44. Magerlein JM, Martin JB (1978) Surgical demand scheduling: a review. Health Serv Res 13(4):418–433

    Google Scholar 

  45. Mannino C, Nilssen E, Nordlander T (2012) A pattern based, robust approach to cyclic master surgery scheduling. J Sched 15(5):553–563. https://doi.org/10.1007/s10951-012-0275-z

    Article  Google Scholar 

  46. Marques I, Captivo E, Barros N (2019) Optimizing the master surgery schedule in a private hospital. Oper Res Health Care 20(1):11–24

    Article  Google Scholar 

  47. MHallah R, Visintin F (2019) A stochastic model for scheduling elective surgeries in a cyclic master surgical schedule. Comput Ind Eng 129:156–168. https://doi.org/10.1016/j.cie.2019.01.030

  48. Min D, Yih Y (2010) Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur J Oper Res 206(3):642–652

    Article  Google Scholar 

  49. Nahmias S, Olsen TL (2015) Production and operations analysis. 7th edn., Waveland Press, Inc

  50. Neyshabouri S, Berg B (2017) Two-stage robust optimization approach to elective surgery and downstream capacity planning. Eur J Oper Res 260:21–40

    Article  Google Scholar 

  51. OECD (2017) Length of hospital stay (indicator). (Accessed 12 Mar 2020)

  52. Penn ML, Potts CN, Harper PR (2017) Multiple criteria mixed-integer programming for incorporating multiple factors into the development of master operating theatre timetables. Eur J Oper Res 262(1):194–206. https://doi.org/10.1016/j.ejor.2017.03.065

    Article  Google Scholar 

  53. Pham DN, Klinkert A (2008) Surgical case scheduling as a generalized job shop scheduling problem. Eur J Oper Res 185(3):1011–1025

    Article  Google Scholar 

  54. Rachuba S, Werners B (2017) A fuzzy multi-criteria approach for robust operating room schedules. Ann Oper Res 251:325–350

    Article  Google Scholar 

  55. Roland B, Riane F (2011) Integrating surgeons preferences in the operating theatre planning. Eur J Ind Eng 5(2):232

    Article  Google Scholar 

  56. Samanlioglu F, Ayag Z, Batili B, Evcimen E, Yilmaz G, Atalay O (2010) Determining master schedule of surgical operations by integer programming: a case study. IIE Ann Conf Expo 2010:2010

    Google Scholar 

  57. Santibáñez P, Begen M, Atkins D (2007) Surgical block scheduling in a system of hospitals: an application to resource and wait list management in a British Columbia health authority. Health Care Manag Sci 10(3):269–282. https://doi.org/10.1007/s10729-007-9019-6

    Article  Google Scholar 

  58. Schneider T, van Essen J, Carlier M, Hans E (2020) Scheduling surgery groups considering multiple downstream resources. Eur J Oper Res 282(2):741–752

    Article  Google Scholar 

  59. Schrijvers G, van Hoorn A, Huiskes N (2012) The care pathway: concepts and theories: an introduction. Int J Integr Care 12:192–198

    Google Scholar 

  60. Servaux M, Sörensen K (2004) Robustness analysis: optimisation. EWG-MCDA Newslett 3(10):1–4

    Google Scholar 

  61. Spratt B, Kozan E (2016) Waiting list management through master surgical schedules: a case study. Oper Res Health Care 10:49–64. https://doi.org/10.1016/j.orhc.2016.07.002

    Article  Google Scholar 

  62. Tànfani E, Testi A (2010) A pre-assignment heuristic algorithm for the master surgical schedule problem (MSSP). Ann Oper Res 178(1):105–119

    Article  Google Scholar 

  63. Toussaint JS, Berry LL (2013) The promise of lean in health care. Mayo Clin Proc 88(1):74–82

    Article  Google Scholar 

  64. Van Houdenhoven M, van Oostrum JM, Wullink G, Hans E, Hurink JL, Bakker J, Kazemier G (2008) Fewer intensive care unit refusals and a higher capacity utilization by using a cyclic surgical case schedule. J Crit Care 23(2):222–6. https://doi.org/10.1016/j.jcrc.2007.07.002

    Article  Google Scholar 

  65. van Oostrum J, Bredenhoff E, Hans E (2010) Suitability and managerial implications of a master surgical scheduling approach. Eur J Oper Res 178(1):91–104

    Google Scholar 

  66. van Oostrum JM, Houdenhoven MV, Hurink JL, Hans E, Wullink G, Kazemier G (2008) A master surgical scheduling approach for cyclic scheduling in operating room departments. Oper Res Spectr 30:355–374

    Article  Google Scholar 

  67. Van Huele C, Vanhoucke M (2014) Analysis of the integration of the physician rostering problem and the surgery scheduling problem. J Med Syst, pp 38–43

  68. Van Riet C, Demeulemeester E (2015) Trade-offs in operating room planning for electives and emergencies: a review. Oper Res Health Care 7:52–69

    Article  Google Scholar 

  69. Vanberkel P, Boucherie R, Hans E, Hurink J, van Lent W, van Harten W (2011) An exact approach for relating recovering surgical patient workload to the master surgical schedule. J Oper Res Soc 62(10):1851–1860

    Article  Google Scholar 

  70. Villarreal MC, Keskinocak P (2016) Staff planning for operating rooms with different surgical services lines. Health Care Manag Sci 19(2):144–169

    Article  Google Scholar 

  71. Vissers J, Adan I, Bekkers J (2005) Patient mix optimization in tactical cardiothoracic surgery planning?: a case study. IMA J Manag Math 16(3):281–304. https://doi.org/10.1093/imaman/dpi023

    Article  Google Scholar 

  72. Walley P, Silvester K, Steyn R (2006) Managing variation in demand: lessons from the UK National Health Service. J Healthcare Manag 5(51):309–320

    Article  Google Scholar 

  73. WHO (2020) Bed occupancy rate (in percentage), acute care hospitals only. (Accessed 09 Mar 2020)

  74. Zeleny M (1975) The theory of the displaced ideal. Lect Notes Econ Math Syst, pp 153–207

  75. Zhang B, Murali P, Dessouky M, Belson D (2009) A mixed integer programming approach for allocating operating room capacity. J Oper Res Soc 60:663–673

    Article  Google Scholar 

  76. Zhu S, Fan W, Yang S, Pei J, Pardalos P (2018) Operating room planning and surgical case scheduling: a review of literature. J Comb Optim 37:757–805

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Broos Maenhout.

Ethics declarations

Conflict of interest

The authors whose names are listed above below certify that they have no affiliations with or involvement in any organisation or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 375 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deklerck, L., Akbarzadeh, B. & Maenhout, B. Constructing and evaluating a master surgery schedule using a service-level approach. Oper Res Int J (2021). https://doi.org/10.1007/s12351-021-00677-8

Download citation

Keywords

  • Operating room department
  • Master surgery scheduling
  • Health services
  • Multi-objective optimisation
  • Case study