Cardinality constrained portfolio optimization with a hybrid scheme combining a Genetic Algorithm and Sonar Inspired Optimization

Abstract

The constraints and the vast solution space of operational research optimization problems make them hard to cope with. However, Computational Intelligence, and especially Nature-Inspired Algorithms, has been a useful tool to tackle hard and large space optimization problems. In this paper, a very consistent and effective hybrid optimization scheme to tackle cardinality constrained portfolio optimization problems is presented. This scheme consists of two nature-inspired algorithms, i.e. Sonar Inspired Optimization algorithm and Genetic Algorithm. Also, the incorporation of heuristic information, i.e. an expert’s knowledge, etc., to the overall performance of the hybrid scheme is tested and compared to previous studies. More specifically, under the framework of a financial portfolio optimization problem, the heuristic information-enhanced hybrid scheme manages to reach a new optimal solution. Additionally, a comparison of the proposed hybrid scheme with other hybrid schemes applied to the same problem with the same data is performed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahn CW, Ramakrishna RS (2003) Elitism-based compact genetic algorithms. IEEE Transactions on Evolutionary Computation. 7: 367–385. https://doi.org/10.1109/TEVC.2003.814633

  2. Bagheri N (2019) Deterministic goal programming approach for Islamic portfolio selection. Oper Res Int J. https://doi.org/10.1007/s12351-019-00517-w

    Article  Google Scholar 

  3. Blickle T (2000) Tournament selection In evolutionary computation 1 basic algorithms and operators. CRC Press, Florida, pp 181–186

    Google Scholar 

  4. Board of Governors of the Federal Reserve System (US): 3-Month Treasury Bill: Secondary Market Rate, https://fred.stlouisfed.org/series/TB3MS, last Accessed 28 July 2020

  5. Boulas K, Tzanetos A, Dounias G (2018) Acquisition of approximate throughput formulas for serial production lines with parallel machines using intelligent techniques. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence. p. 18. ACM

  6. Chen W (2015) Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A 429:125–139. https://doi.org/10.1016/j.physa.2015.02.060

    Article  Google Scholar 

  7. Cui X, Gao J, Shi Y (2019) Multi-period mean–variance portfolio optimization with management fees. Oper Res Int J. https://doi.org/10.1007/s12351-019-00482-4

    Article  Google Scholar 

  8. Fernández A, Gómez S (2007) Portfolio selection using neural networks. Comput Oper Res 34:1177–1191. https://doi.org/10.1016/j.cor.2005.06.017

    Article  Google Scholar 

  9. Giannakouris G, Vassiliadis V, Dounias G (2010) Experimental study on a hybrid nature-inspired algorithm for financial portfolio optimization. In: Hellenic Conference on Artificial Intelligence. Springer, pp. 101–111

  10. Holland JH (1992) Genetic algorithms. Sci American 267:66–73

    Article  Google Scholar 

  11. Huang C-Y, Chiou C-C, Wu T-H, Yang S-C (2015) An integrated DEA-MODM methodology for portfolio optimization. Oper Res Int J 15:115–136. https://doi.org/10.1007/s12351-014-0164-7

    Article  Google Scholar 

  12. Kalayci CB, Ertenlice O, Akyer H, Aygoren H (2017) An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization. Expert Syst Appl 85:61–75. https://doi.org/10.1016/j.eswa.2017.05.018

    Article  Google Scholar 

  13. Kocadağlı O, Keskin R (2015) A novel portfolio selection model based on fuzzy goal programming with different importance and priorities. Expert Syst Appl 42:6898–6912. https://doi.org/10.1016/j.eswa.2015.04.047

    Article  Google Scholar 

  14. Kühn J (2006) Optimal risk-return trade-offs of commercial banks: and the suitability of profitability measures for loan portfolios. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  15. Kumar D, Mishra KK (2017) Portfolio optimization using novel co-variance guided Artificial Bee Colony algorithm. Swarm and Evolut Comput 33:119–130. https://doi.org/10.1016/j.swevo.2016.11.003

    Article  Google Scholar 

  16. Loukeris N, Donelly D, Khuman A, Peng Y (2009) A numerical evaluation of meta-heuristic techniques in portfolio optimisation. Oper Res Int J 9:81–103. https://doi.org/10.1007/s12351-008-0028-0

    Article  Google Scholar 

  17. Lurton X (2002) An introduction to underwater acoustics: principles and applications. Springer Science and Business Media, NY

    Google Scholar 

  18. Lwin KT, Qu R, MacCarthy BL (2017) Mean-VaR portfolio optimization: a nonparametric approach. Eur J Oper Res 260:751–766. https://doi.org/10.1016/j.ejor.2017.01.005

    Article  Google Scholar 

  19. Macedo LL, Godinho P, Alves MJ (2017) Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules. Expert Syst Appl 79:33–43. https://doi.org/10.1016/j.eswa.2017.02.033

    Article  Google Scholar 

  20. Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  21. Mayambala F, Rönnberg E, Larsson T (2015) Eigendecomposition of the mean-variance portfolio optimization model. In: Migdalas A, Karakitsiou A (eds) Optimization, control, and applications in the information age. Springer International Publishing, Cham, pp 209–232

    Google Scholar 

  22. Mishra SK, Panda G, Majhi R (2014) Constrained portfolio asset selection using multiobjective bacteria foraging optimization. Oper Res Int J 14:113–145. https://doi.org/10.1007/s12351-013-0138-1

    Article  Google Scholar 

  23. Moradi M, Sadollah A, Eskandar H, Eskandar H (2017) The application of water cycle algorithm to portfolio selection. Econ Research-Ekonomska Istraživanja 30:1277–1299. https://doi.org/10.1080/1331677X.2017.1355254

    Article  Google Scholar 

  24. Pérez-Gonzaga S, Jordán-Núñez J, Miro-Martinez P (2017) Discrete fuzzy system orbits as a portfolio selection method. Oper Res Int J. https://doi.org/10.1007/s12351-017-0361-2

    Article  Google Scholar 

  25. Rezaei Pouya A, Solimanpur M, Jahangoshai Rezaee M (2016) Solving multi-objective portfolio optimization problem using invasive weed optimization. Swarm and Evolut Comput 28:42–57. https://doi.org/10.1016/j.swevo.2016.01.001

    Article  Google Scholar 

  26. Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Financ 26:1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6

    Article  Google Scholar 

  27. Sharpe WF (1994) The Sharpe Ratio. J Portf Manag 21:49. https://doi.org/10.3905/jpm.1994.409501

    Article  Google Scholar 

  28. Stafford R Random Vectors with Fixed Sum, https://www.mathworks.com/matlabcentral/fileexchange/9700, last Accessed 17 Dec 2017

  29. Thomaidis NS, Angelidis T, Vassiliadis V, Dounias G (2009) Active portfolio management with cardinality constraints: an application of particle swarm optimization. New Math and Nat Comput 5:535–555. https://doi.org/10.1142/S1793005709001519

    Article  Google Scholar 

  30. Tzanetos A, Dounias G (2018) Sonar inspired optimization (SIO) in engineering applications. Evol Syst 23:1–9

    Google Scholar 

  31. Tzanetos A, Vassiliadis V, Dounias G (2017) A novel hybrid Nature-Inspired Scheme for solving a financial optimization problem. In: International Conference on Hybrid Artificial Intelligence Systems. pp. 161–172. Springer

  32. Tzanetos A, Vassiliadis V, Dounias G (2018) Boosting the performance of hybrid Nature-Inspired algorithms: application from the financial optimization domain. Logic J IGPL 28:239–247. https://doi.org/10.1093/jigpal/jzy048

    Article  Google Scholar 

  33. Tzanetos A, Kyriklidis C, Papamichail A, Dimoulakis A, Dounias G (2018) A Nature Inspired metaheuristic for Optimal Leveling of Resources in Project Management. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence. p. 17. ACM

  34. Vassiliadis V, Thomaidis N, Dounias G (2009) Active portfolio management under a downside risk framework comparison of a hybrid nature—inspired scheme. In: Corchado E, Wu X, Oja E, Herrero Á, Baruque B (eds) Hybrid artificial intelligence systems. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 702–712

    Google Scholar 

  35. Vassiliadis V, Dounias G, Tzanetos, A (2012) Parameter tuning of hybrid nature-inspired intelligent metaheuristics for solving financial portfolio optimization problems. In: Hellenic Conference on Artificial Intelligence. Springer pp. 198–205

  36. Ye T, Yang Z, Feng S (2017) Biogeography-based optimization of the portfolio optimization problem with second order stochastic dominance constraints. Algorithms 10:100. https://doi.org/10.3390/a10030100

    Article  Google Scholar 

  37. Yilmaz AE, Weber G-W (2011) Why you should consider nature inspired optimization methods in financial mathematics. In: Machado JAT, Baleanu D, Luo ACJ (eds) Nonlinear and complex dynamics: applications in physical, biological, and financial systems. Springer, New York, NY, pp 241–255

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandros Tzanetos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konstantinou, C., Tzanetos, A. & Dounias, G. Cardinality constrained portfolio optimization with a hybrid scheme combining a Genetic Algorithm and Sonar Inspired Optimization. Oper Res Int J (2020). https://doi.org/10.1007/s12351-020-00614-1

Download citation

Keywords

  • Portfolio optimization
  • Sonar inspired optimization
  • Genetic algorithm
  • Hybrid algorithms
  • Nature-inspired algorithms