Skip to main content

Spatial visualization on patterns of disaggregate robberies

Abstract

The problem of aggregating large samples of criminal data in visual representations, as often observed in many studies using geographic information systems and optimization tools to perform social assessments and design spatial patterns, is discussed in this work. A compensation bias in the correlation measure of the spatial association can be found in such types of big data aggregations, which may jeopardize the entire analysis and the conclusions from the results. In this work, a big dataset of robbery incidents recorded from the years 2013 through 2016 in Recife, one of the most important Brazilian capitals, is decomposed into nine small sets of specific robberies, namely, larceny, armed robbery, group stealing, motor vehicles thefts, burglary, commercial burglary, saidinha de banco (saucy bank), motor vehicle robbery (carjacking) and arrastão (flash robbery). More accurate measures for the spatial autocorrelation can be derived from the individual incidences as proposed in this work. The visualization of optimized hot spots and cold spots of crime based on these autocorrelation measures besides enable rapid actions where crime concentrates, they have the property to design spatial patterns that can be associated with environmental, social and economic factors to support more efficient decision making on the allocation of public safety resources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Notes

  1. https://doi.org/10.3886/ICPSR04545.v1.

  2. When disaggregated, data on the individual types of the remaining robberies, besides larceny and armed robbery, become insufficient to explore additional spatial regressions.

References

  • Alba RD, Logan JR, Bellair PE (1994) Living with crime: the implications of racial/ethnic differences in suburban location. Soc Forces 73(2):395–434

    Article  Google Scholar 

  • Andreoni V, Galmarini S (2016) Mapping socioeconomic well-being across EU regions. Int J Soc Econ 43(3):226–243

    Article  Google Scholar 

  • Andresen MA (2013) Unemployment, business cycles, crime, and the Canadian provinces. J Crim Justice 41(4):220–227

    Article  Google Scholar 

  • Andresen MA, Linning SJ (2012) The (in)appropriateness of aggregating across crime types. Appl Geogr 35:275–282

    Article  Google Scholar 

  • Andresen MA, Malleson N (2011) Testing the stability of crime patterns: implications for theory and policy. J Res Crime Delinq 48:58–82

    Article  Google Scholar 

  • Andresen MA, Curman AS, Linning SJ (2017a) The trajectories of crime at places: understanding the patterns of disaggregated crime types. J Quant Criminol 33(3):427–449

    Article  Google Scholar 

  • Andresen MA, Linning SJ, Malleson N (2017b) Crime at places and spatial concentrations: exploring the spatial stability of property crime in Vancouver BC, 2003–2013. J Quant Criminol 33(2):255–275

    Article  Google Scholar 

  • Arabatzis S, Manos B (2005) An integrated system for water resources monitoring, economic evaluation and management. Oper Res Int J 5(1):193–208

    Article  Google Scholar 

  • Bernasco W, Elffers H (2010) Statistical analysis of spatial crime data. In: Piquero AR, Weisburd D (eds) Handbook of quantitative criminology. Springer, New York, pp 699–724. https://doi.org/10.1007/978-0-387-77650-7_33

    Chapter  Google Scholar 

  • Berry JK, Sailor JK (1987) Use of a geographic information system for storm runoff prediction from small urban watersheds. Environ Manag 11(1):21–27

    Article  Google Scholar 

  • Bimonte S, Pradel M, Boffety D, Tailleur A, André G, Bzikha R, Chanet JP (2013) A New sensor-based spatial OLAP architecture centered on an agricultural farm energy-use diagnosis tool. Int J Decis Support Syst Technol (IJDSST) 5(4):1–20

    Article  Google Scholar 

  • Boman A (2007) Does migration pay? Earnings effects from geographic mobility following job displacement. rapport nr.: Working papers in Economics 244

  • Braga A, Hureau DM, Papachristos AV (2010) The concentration and stability of gun violence at micro places in Boston, 1980–2008. J Quant Criminol 26:33–53

    Article  Google Scholar 

  • Braga A, Hureau DM, Papachristos AV (2011) The relevance of micro places to citywide robbery trends: a longitudinal analysis of robbery incidents at street corners and block faces in Boston. J Res Crime Delinq 48:7–32

    Article  Google Scholar 

  • Buccella A, Cechich A, Gendarmi D, Lanubile F, Semeraro G, Colagrossi A (2010) GeoMergeP: geographic information integration through enriched ontology matching. New Generation Computing 28(1):41–71

    Article  Google Scholar 

  • Burrough PA (1986) Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford

    Book  Google Scholar 

  • Caldas de Castro M, Singer BH (2006) Controlling the false discovery rate: a new application to account for multiple and dependent test in local statistics of spatial association. Geogr Anal 38:180–208

    Article  Google Scholar 

  • Čerba O, Jedlička K, Čada V, Charvát K (2017) Centrality as a method for the evaluation of semantic resources for disaster risk reduction. ISPRS Int J Geo-Inf 6(8):237

    Article  Google Scholar 

  • Chainey S, Ratcliffe J (2013) GIS and crime mapping. Wiley, New York

    Google Scholar 

  • Chainey S, Tompson L, Uhlig S (2008) The utility of hotspot mapping for predicting spatial patterns of crime. Secur J 21(1–2):4–28

    Article  Google Scholar 

  • Cohen J, Gorr WL (2005) Development of crime forecasting and mapping systems for use by police in Pittsburgh, Pennsylvania, and Rochester, New York, 1990–2001. ICPSR04545-v1. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2006-08-31. https://doi.org/10.3886/icpsr04545.v1

  • Daudelin J, Ratton JL (2017) Mercados de drogas, guerra e paz no Recife. Tempo Social 29(2):115–133

    Article  Google Scholar 

  • Fajnzylber P, Lederman D, Loayza N (2002) What causes violent crime? Eur Econ Rev 46(7):1323–1357

    Article  Google Scholar 

  • Fatima-Zohra Y, Djamila H, Omar B (2015) A surveillance and spatiotemporal visualization model for infectious diseases using social network. Int J Decis Support Syst Technol (IJDSST) 7(4):1–19

    Article  Google Scholar 

  • Figueiredo CJJD, Mota CMDM (2016). A classification model to evaluate the security level in a city based on GIS-MCDA. Math Problems Eng 2016. https://doi.org/10.1155/2016/3534824

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Glaeser EL, Sacerdotev B (1999) Why is there more crime in cities? J Polit Econ 107(S6):S225–S258

    Article  Google Scholar 

  • Gober-Meyers P (1978) Migration analysis: the role of geographic scale. Ann Reg Sci 12(3):52–61

    Article  Google Scholar 

  • Hachikyan A, Scherer R, Angelova M, Lazarova M (2005) Decision support system for a river network pollution estimation based on a structural-linguistic data model. Oper Res Int J 5(1):105–113

    Article  Google Scholar 

  • Hong SY, Sadahiro Y (2014) Measuring geographic segregation: a graph-based approach. J Geogr Syst 16(2):211–231

    Article  Google Scholar 

  • Kaloudis ST, Lorentzos NA, Sideridis AB, Yialouris CP (2005) A decision support system for forest fire management. Oper Res Int J 5(1):141–152

    Article  Google Scholar 

  • Kim MC, Zhu Y, Chen C (2016) How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014). Scientometrics 107(1):123–165

    Article  Google Scholar 

  • Kirk KE, Haq MZ, Alam MS, Haque U (2014) Geospatial technology: a tool to aid in the elimination of malaria in Bangladesh. ISPRS Int J Geo-Inf 4(1):47–58

    Article  Google Scholar 

  • Kursah MB (2017) Modelling malaria susceptibility using geographic information system. GeoJournal 82(6):1101–1111. https://doi.org/10.1007/s10708-016-9732-0

    Article  Google Scholar 

  • Lochner L (2004) Education, work, and crime: a human capital approach. Int Econ Rev 45(3):811–843

    Article  Google Scholar 

  • Maguire DJ (1991) An overview and definition of GIS. In: Maguire DJ, Goodchild MF, Rhind DW (eds) Geographical information systems: principles and applications, vol 1. Wiley, Hoboken, pp 9–20

    Google Scholar 

  • Maltz M, Gordon AC, Friedman W (1991) Mapping crime in its community setting: event geography analysis

  • Manfré LA, Hirata E, Silva JB, Shinohara EJ, Giannotti MA, Larocca APC, Quintanilha JA (2012) An analysis of geospatial technologies for risk and natural disaster management. ISPRS Int J Geo-Inf 1(2):166–185

    Article  Google Scholar 

  • Melo SN, Matias LF, Andresen MA (2015) Crime concentrations and similarities in spatial crime patterns in a Brazilian context. Appl Geogr 62:314–324

    Article  Google Scholar 

  • Menezes T, Silveira-Neto R, Monteiro C, Ratton JL (2013) Spatial correlation between homicide rates and inequality: evidence from urban neighborhoods. Econ Lett 120(1):97–99

    Article  Google Scholar 

  • Moonen M, Cattrysse D, Van Oudheusden D (2008) Organising patrol deployment against violent crimes. Oper Res Int J 7(3):401–418

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  Google Scholar 

  • Nasar JL, Fisher B (1993) ‘Hot spots’ of fear and crime: a multi-method investigation. J Environ Psychol 13(3):187–206

    Article  Google Scholar 

  • Nelson EP, Connors KA, Suárez C (2007) GIS-based slope stability analysis, Chuquicamata open pit copper mine, Chile. Nat Resour Res 16(2):171–190

    Article  Google Scholar 

  • Nepomuceno TCC, de Moura JA, e Silva LC and Costa APCS (2017) Alcohol and violent behavior among football spectators: AN empirical assessment of Brazilian’s criminalization. Int J Law Crime Justice 51:34–44. ISSN 1756-0616. http://dx.doi.org/10.1016/j.ijlcj.2017.05.001

  • Nikolopoulou AI, Repoussis PP, Tarantilis CD, Zachariadis EE (2019) Adaptive memory programming for the many-to-many vehicle routing problem with cross-docking. Oper Res Int J 19(1):1–38. https://doi.org/10.1007/s12351-016-0278-1

    Article  Google Scholar 

  • Oliveira W (2004) Arrombamentos de residências assustam moradores de Casa Amarela. Diário de Pernambuco. http://blogs.diariodepernambuco.com.br/segurancapublica/?p=7585. Accessed 31 Aug 2017

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27:286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x

    Article  Google Scholar 

  • Pereira DV, Mota CM, Andresen MA (2015) Social disorganization and homicide in Recife, Brazil. Int J Offender Ther Comp Criminol 1:2. https://doi.org/10.1177/0306624X15623282

    Article  Google Scholar 

  • Pereira DV, Mota CM, Andresen MA (2017) The homicide drop in Recife, Brazil: a study of crime concentrations and spatial patterns. Homicide Studes 21(1):21–38

    Article  Google Scholar 

  • Power DJ, Roth RM, Karsten R (2013). Decision support for crisis incidents. Engineering effective decision support technologies: New Models and Applications: New Models and Applications, 149

  • Rephann TJ (2009) Rental housing and crime: the role of property ownership and management. Ann Reg Sci 43(2):435–451

    Article  Google Scholar 

  • Rodríguez-González A, Alor-Hernandez G, Mayer MA, Cortes-Robles G, Perez-Gallardo Y (2013) Application of probabilistic techniques for the development of a prognosis model of stroke using epidemiological studies. Int J Decis Support Syst Technol (IJDSST) 5(4):34–58

    Article  Google Scholar 

  • Schröder W, Schmidt G, Bast H, Pesch R, Kiel E (2007) Pilot-study on GIS-based risk modelling of a climate warming induced tertian malaria outbreak in Lower Saxony (Germany). Environ Monit Assess 133(1):483–493

    Article  Google Scholar 

  • Scorzafave LG, Soares MK (2009) Income inequality and pecuniary crimes. Econ Lett 104(1):40–42

    Article  Google Scholar 

  • Sherman LW, Gartin P, Buerger ME (1989) Hot spots of predatory crime: routine activities and the criminology of place. Criminology 27:27–55

    Article  Google Scholar 

  • Spelman W (1993) Abandoned buildings: magnets for crime? J Crim Justice 21(5):481–495

    Article  Google Scholar 

  • Sridharan S, Meyer J (2005) Exploratory spatial data approach to identify the context of unemployment-crime linkages in Virginia, 1995–2000. ICPSR04546-v1. Inter-university Consortium for Political and Social Research [distributor], Ann Arbor, MI, 2006-08-31. https://doi.org/10.3886/icpsr04546.v1

  • Subasinghe S, Estoque R, Murayama Y (2016) Spatiotemporal analysis of urban growth using GIS and remote sensing: a case study of the Colombo metropolitan area, Sri Lanka. ISPRS Int J Geo-Inf 5(11):197

    Article  Google Scholar 

  • Tabangin DR, Flores JC, Emperador NF (2010) Investigating crime hotspot places and their implication to urban environmental design: a geographic visualization and data mining approach. Int J Hum Soc Sci 5(4):210–218

    Google Scholar 

  • Tarantilis CD, Kiranoudis CT (2001) Using the vehicle routing problem for the transportation of hazardous materials. Oper Res Int J 1(1):67–78

    Article  Google Scholar 

  • Tatsiramos K (2009) Geographic labour mobility and unemployment insurance in Europe. J Popul Econ 22(2):267–283

    Article  Google Scholar 

  • Thomas JJ, Cook KA (2005) Illuminating the path: the R&D agenda for visual analytics. Natl Visual Anal Center, USA

    Google Scholar 

  • Tlili T, Krichen S, Faiz S (2013) Towards a decision making support system for the capacitated vehicle routing problem. Int J Decis Support Syst Technol (IJDSST) 5(4):21–33

    Article  Google Scholar 

  • Tseloni A, Thompson R (2015) Securing the premises. Significance 12(1):32–35

    Article  Google Scholar 

  • Tufte E (1983) The visual display of quantitative information. Graphics Press, Cheshire

    Google Scholar 

  • Tukey J (1977) Exploratory data analysis. Addison-Wesley, Boston

    Google Scholar 

  • Webber D, Pacheco G (2016) Changes in intra-city employment patterns: a spatial analysis. Int J Soc Econ 43(3):263–283

    Article  Google Scholar 

  • Weisburd D, Amram S (2014) The law of concentrations of crime at place: the case of Tel Aviv-Jaffa. Police Pract Res 15:101–114

    Article  Google Scholar 

  • Weisburd D, Bushway S, Lum C, Yang S-M (2004) Trajectories of crime at places: a longitudinal study of street segments in the City of Seattle. Criminology 42:283–321

    Article  Google Scholar 

  • Zachariadis EE, Tarantilis C, Kiranoudis CT (2017) Vehicle routing strategies for pick-up and delivery service under two dimensional loading constraints. Oper Res Int J 17(1):115–143

    Article  Google Scholar 

Download references

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thyago Celso C. Nepomuceno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nepomuceno, T.C.C., Costa, A.P.C.S. Spatial visualization on patterns of disaggregate robberies. Oper Res Int J 19, 857–886 (2019). https://doi.org/10.1007/s12351-019-00479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00479-z

Keywords

  • Criminal behavior
  • Spatial analysis
  • Geographic information system (GIS)
  • Data visualization
  • Data disaggregation
  • Optimized hot spots