Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI et al (1996) Fast discovery of association rules. Adv Knowl Discov Data Min 12(1):307–328
Google Scholar
Al-khedhairi A (2008) Simulated annealing metaheuristic for solving p-median problem. Int J Contemp Math Sci 3(28):1357–1365
Google Scholar
Alp O, Erkut E, Drezner Z (2003) An efficient genetic algorithm for the p-median problem. Ann Oper Res 122(1–4):21–42
Article
Google Scholar
Anaya-Arenas AM, Renaud J, Ruiz A (2014) Relief distribution networks: a systematic review. Ann Oper Res 223(1):53–79
Article
Google Scholar
Avella P, Sassano A, Vasil’ev I (2007) Computational study of large-scale p-median problems. Math Program 109(1):89–114
Article
Google Scholar
Avella P, Boccia M, Salerno S, Vasilyev I (2012) An aggregation heuristic for large scale p-median problem. Comput Oper Res 39(7):1625–1632
Article
Google Scholar
Beasley JE (1990) Or-library: distributing test problems by electronic mail. J Oper Res Soc 41(11):1069–1072
Article
Google Scholar
Ben-Dor A, Chor B, Karp R, Yakhini Z (2003) Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol 10(3–4):373–384
Article
Google Scholar
Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E 67(3):031902
Article
Google Scholar
Berkhin P (2006) A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle M (eds) Grouping multidimensional data. Springer, Berlin, pp 25–71
Chapter
Google Scholar
Boutsinas B (2013a) Machine-part cell formation using biclustering. Eur Journal Oper Res 230(3):563–572
Article
Google Scholar
Boutsinas B (2013b) A new biclustering algorithm based on association rule mining. Int J Artif Intell Tools 22(03):1350017
Article
Google Scholar
Boutsinas B, Siotos C, Gerolimatos A (2008) Distributed mining of association rules based on reducing the support threshold. Int J Artif Intell Tools 17(06):1109–1129
Article
Google Scholar
Bozkaya B, Zhang J, Erkut E (2002) An efficient genetic algorithm for the p-median problem. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 179–205
Chapter
Google Scholar
Busygin S, Prokopyev O, Pardalos PM (2008) Biclustering in data mining. Comput Oper Res 35(9):2964–2987
Article
Google Scholar
Chardaire P, Lutton JL (1993) Using simulated annealing to solve concentrator location problems in telecommunication networks. In: Vidal RVV (ed) Applied simulated annealing. Springer, Berlin, pp 175–199
Chapter
Google Scholar
Cheng Y, Church G (2000) Biclustering of expression data. In: proceedings of the eighth international conference on intelligent systems for molecular biology (ismb)
Chiyoshi F, Galvao RD (2000) A statistical analysis of simulated annealing applied to the p-median problem. Ann Oper Res 96(1–4):61–74
Article
Google Scholar
Church RL, ReVelle CS (1976) Theoretical and computational links between the p-median, location set-covering, and the maximal covering location problem. Geogr Anal 8(4):406–415
Article
Google Scholar
Daskin MS, Maass KL (2015) The p-median problem. In: Laporte G, Nickel S, Saldanha da Gama F (eds) Location science. Springer, Cham, pp 21–45
Google Scholar
Densham PJ, Rushton G (1992) A more efficient heuristic for solving large p-median problems. Pap Reg Sci 71(3):307–329
Article
Google Scholar
Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 269–274
Drezner Z, Hamacher HW (2001) Facility location: applications and theory. Springer, Berlin
Google Scholar
Erkut E, Myroon T, Strangway K (2000) Transalta redesigns its service-delivery network. Interfaces 30(2):54–69
Article
Google Scholar
Fitzsimmons JA, Allen LA (1983) A warehouse location model helps texas comptroller select out-of-state audit offices. Interfaces 13(5):40–46
Article
Google Scholar
Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345
Article
Google Scholar
García S, Labbé M, Marín A (2011) Solving large p-median problems with a radius formulation. INFORMS J Comput 23(4):546–556
Article
Google Scholar
Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Oper Res 12(3):450–459
Article
Google Scholar
Hakimi SL (1965) Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13(3):462–475
Article
Google Scholar
Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowl Discov 8(1):53–87
Article
Google Scholar
Hanjoul P, Peeters D (1985) A comparison of two dual-based procedures for solving the p-median problem. Eur J Oper Res 20(3):387–396
Article
Google Scholar
Hansen P, Mladenović N (1997) Variable neighborhood search for the p-median. Location Sci 5(4):207–226
Article
Google Scholar
Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129
Article
Google Scholar
Honey R, Rushton G, Lolonis P, Dalziel B, Armstrong M, De S, Densham P (1991) Stages in the adoption of a spatial decision support system for reorganizing service delivery regions. Environ Plan C Gov Policy 9(1):51–63
Article
Google Scholar
Karatas M, Razi N, Tozan H (2016) A comparison of p-median and maximal coverage location models with q-coverage requirement. Proc Eng 149:169–176
Article
Google Scholar
Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. i: the p-centers. SIAM J Appl Math 37(3):513–538
Article
Google Scholar
Klastorin TD (1985) The p-median problem for cluster analysis: a comparative test using the mixture model approach. Manag Sci 31(1):84–95
Article
Google Scholar
Lazzeroni L, Owen A (2002) Plaid models for gene expression data. Stat Sin 12:61–86
Google Scholar
Liu J, Wang W (2003) Op-cluster: clustering by tendency in high dimensional space. In: Third IEEE international conference on data mining, 2003. ICDM 2003. IEEE, pp 187–194
Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 1(1):24–45
Article
Google Scholar
Maranzana F (1964) On the location of supply points to minimize transport costs. J Oper Res Soc 15(3):261–270
Article
Google Scholar
Megiddo N (1986) On the complexity of linear programming. IBM Thomas J, Watson Research Division
Mladenović N, Brimberg J, Hansen P, Moreno-Pérez JA (2007) The p-median problem: a survey of metaheuristic approaches. Eur J Oper Res 179(3):927–939
Article
Google Scholar
Mucherino A, Papajorgji P, Pardalos PM (2009) A survey of data mining techniques applied to agriculture. Oper Res 9(2):121–140
Google Scholar
Mulvey JM, Crowder HP (1979) Cluster analysis: an application of lagrangian relaxation. Manag Sci 25(4):329–340
Article
Google Scholar
Murali T, Kasif S (2002) Extracting conserved gene expression motifs from gene expression data. In: Biocomputing 2003. World Scientific, pp 77–88
Murray AT, Church RL (1996) Applying simulated annealing to location-planning models. J Heuristics 2(1):31–53
Article
Google Scholar
Ndiaye F, Ndiaye BM, Ly I (2012) Application of the p-median problem in school allocation. Am J Oper Res 2(02):253
Google Scholar
Owen SH, Daskin MS (1998) Strategic facility location: a review. Eur J Oper Res 111(3):423–447
Article
Google Scholar
Panteli A, Boutsinas B (2018) Improvement of similarity-diversity tradeoff in recommender systems based on a facility location model. Technical Report. http://hdl.handle.net/10889/11695
Panteli A, Boutsinas B, Giannikos I (2014) On set covering based on biclustering. Int J Inf Technol Decis Mak 13(05):1029–1049
Article
Google Scholar
Pensa RG, Robardet C, Boulicaut JF (2005) A bi-clustering framework for categorical data. In: European conference on principles of data mining and knowledge discovery. Springer, pp 643–650
Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129
Article
Google Scholar
ReVelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey. Eur J Oper Res 165(1):1–19
Article
Google Scholar
ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2(1):30–42
Article
Google Scholar
Rolland E, Schilling DA, Current JR et al (1997) An efficient tabu search procedure for the p-median problem. Eur J Oper Res 96(2):329–342
Article
Google Scholar
Rosenwein MB (1994) Discrete location theory, edited by PB Mirchandani and RL Francis, John Wiley & Sons, New York, 1990, 555 pp. Networks 24(2):124–125
Article
Google Scholar
Ruslim NM, Ghani NA (2006). An application of the p-median problem with uncertainty in demand in emergency medical services. In: Proceedings of the 2nd IMT-GT regional conference on mathematics, statistics and applications. http://math.usm.my/research/OnlineProc/OR06.pdf. Accessed 15 May 2017
Snyder LV, Daskin MS (2005) Reliability models for facility location: the expected failure cost case. Transp Sci 39(3):400–416
Article
Google Scholar
Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl_1):S136–S144
Article
Google Scholar
Tanay A, Sharan R, Shamir R (2005) Biclustering algorithms: a survey. Handb Comput Mol Biol 9(1–20):122–124
Google Scholar
Teitz MB, Bart P (1968) Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper Res 16(5):955–961
Article
Google Scholar
Ungar L, Foster DP (1998) A formal statistical approach to collaborative filtering. CONALD98
Wang HL, Wu BY, Chao KM (2009) The backup 2-center and backup 2-median problems on trees. Netw Int J 51(1):39–49
Google Scholar
Willer DJ (1990) A spatial decision support system for bank location: a case study. Citeseer
Yang J, Wang W, Wang H, Yu P (2002) d-clusters: capturing subspace correlation in a large data set. In: ICDE. IEEE, p 0517