Operational Research

, Volume 13, Issue 1, pp 47–65 | Cite as

Clustering social networks using ant colony optimization

  • Supreet Reddy Mandala
  • Soundar R. T. Kumara
  • Calyampudi Radhakrishna Rao
  • Reka Albert
Original Paper


Several e-marketing applications rely on the ability to understand the structure of social networks. Social networks can be represented as graphs with customers as nodes and their interactions as edges. Most real world social networks are known to contain extremely dense subgraphs (also called as communities) which often provide critical insights about the emergent properties of the social network. The communities, in most cases, correspond to the various segments in a social system. Such an observation led researchers to propose algorithms to detect communities in networks. A modularity measure representing the quality of a network division has been proposed which on maximization yields good partitions. The modularity maximization is a strongly NP-complete problem which renders mathematical programming based optimization intractable for large problem sizes. Many heuristics based on simulated annealing, genetic algorithms and extremal optimization have been used to maximize modularity but have lead to suboptimal solutions. In this paper, we propose an ant colony optimization (ACO) based approach to detect communities. To the best of our knowledge, this is the first application of ACO to community detection. We demonstrate that ACO based approach results in a significant improvement in modularity values as compared to existing heuristics in the literature. The reasons for this improvement when tested on real and synthetic data sets are discussed.


Data mining Community detection Ant colony optimization E-marketing Social networks 


  1. Barabási AL, Albert R (1999) Emergenge of scaling in random networks. Science 286(5439):509CrossRefGoogle Scholar
  2. Blum C, Dorigo M (2004) The hyper-cube framework for ant colony optimization. IEEE Trans Actions Syst Man Cybern 34(2):1161CrossRefGoogle Scholar
  3. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, OxfordGoogle Scholar
  4. Brandes U, Delling D, Gaertler M, Goerke R, Hoefer M, Nikoloski Z, Wagner D (2006)
  5. Bullnheimer B, Hartl R, Strauss C (1997) A new rank based version of the ant system—a computational study. Technical report. University of Vienna, Institute of Management ScienceGoogle Scholar
  6. Clauset A, Newman M, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111CrossRefGoogle Scholar
  7. Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005:P09008Google Scholar
  8. Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53. doi: 10.1109/4235.585892 CrossRefGoogle Scholar
  9. Dorigo M, Stützle T (2004) Ant colony optimization. The MIT Press, CambridgeCrossRefGoogle Scholar
  10. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29CrossRefGoogle Scholar
  11. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E 72:027104CrossRefGoogle Scholar
  12. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75. doi: 10.1016/j.physrep.2009.11.002 CrossRefGoogle Scholar
  13. Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36. doi: 10.1073/pnas.0605965104. Google Scholar
  14. Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6:565CrossRefGoogle Scholar
  15. Goldberg D, Segrest P (1987) Finite Markov chain analysis of genetic algorithms. In: Proceedings of the second international conference on genetic algorithms, pp 1–8Google Scholar
  16. Guimerá R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech Theory Exp 2005:P02001.Google Scholar
  17. Guimerá R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103. doi: 10.1103/PhysRevE.68.065103 CrossRefGoogle Scholar
  18. Guimerà R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70(2):025101. doi: 10.1103/PhysRevE.70.025101 CrossRefGoogle Scholar
  19. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407:651CrossRefGoogle Scholar
  20. Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 29:291Google Scholar
  21. Korosec P, Silc J, Robic B (2004) Solving the mesh-partitioning problem with an ant-colony algorithm*1. Parallel Comput 30(5–6):785CrossRefGoogle Scholar
  22. Lehmann S, Hansen LK (2007) Deterministic modularity optimization. Eur Phys J B 60:83. doi: 10.1140/epjb/e2007-00313-2 CrossRefGoogle Scholar
  23. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution. ACM Trans Knowl Discov Data 1:2Google Scholar
  24. Linden G, Smith B, York J (2003) recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76CrossRefGoogle Scholar
  25. Liu X, Li D, Wang S, Tao Z (2007) Effective Algorithm for Detecting Community Structure in Complex Networks Based on GA and Clustering. Computational Science—ICCS 2007, Springer, Berlin, vol 4488, pp 657–664Google Scholar
  26. McPherson L, Smith-Lovin M, Cook J (2001) Birds of a feather: homophiliy in social networks. Annu Rev Sociol 27:15CrossRefGoogle Scholar
  27. Meila M (2007) Comparing clusterings—an information based distance. J Multivar Anal 98(5):873. doi: 10.1016/j.jmva.2006.11.013 Google Scholar
  28. Merz P, Freisleben B (2002) Greedy and local search heuristics for unconstrained binary quadratic programming. J Heuristics 8:197CrossRefGoogle Scholar
  29. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824CrossRefGoogle Scholar
  30. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:066133CrossRefGoogle Scholar
  31. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104CrossRefGoogle Scholar
  32. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577. doi: 10.1073/pnas.0601602103. Google Scholar
  33. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in newtorks. Phys Rev E 69:026113CrossRefGoogle Scholar
  34. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76:036106. doi: 10.1103/PhysRevE.76.036106 CrossRefGoogle Scholar
  35. Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks. Phys Rev E 67(2):026112. doi: 10.1103/PhysRevE.67.026112 CrossRefGoogle Scholar
  36. Reichardt J, Bornholdt S (2007) Clustering of sparse data via network communities—a prototype study of a large online market. J Stat Mech 2007:06016Google Scholar
  37. Ruan J, Zhang W (2007) An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: Seventh IEEE international conference on data mining, pp 643–648Google Scholar
  38. Schafer JB, Konstan JA, Reidl J (2001) Data mining and knowledge discovery. Kluwer, Dordrecht, p 115Google Scholar
  39. Stutzle T, Hoos H (1997) MAX–MIN ant system and local search for the traveling salesman problem. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), pp 309–314. doi: 10.1109/ICEC.1997.592327
  40. Tasgin M, Herdagdelen A, Bingol H (2007) Community detection in complex networks using genetic algorithms, p 6.
  41. Traud AL, Kelsic ED, Mucha PJ, Porter MA (2008) Community structure in online collegiate social networks, vol 809, pp 1–38. ArXiv e-printsGoogle Scholar
  42. Watts D, Strogatz S (1998) Collective dynamics of ’small-world’ networks. Nature 393:440CrossRefGoogle Scholar
  43. Zachary W (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452Google Scholar
  44. Zlochin M, Birattari M, Meuleau N, Dorigo M (2004) Model-based search for combinatorial optimization: a critical survey. Ann Oper Res 131(1):373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Supreet Reddy Mandala
    • 1
  • Soundar R. T. Kumara
    • 1
  • Calyampudi Radhakrishna Rao
    • 2
    • 3
  • Reka Albert
    • 4
    • 5
  1. 1.Department of Industrial EngineeringPennsylvania State UniversityUniversity ParkUSA
  2. 2.Advanced Institute of Mathematics, Statistics and Computer ScienceUniversity of HyderabadHyderabadIndia
  3. 3.Department of StatisticsPennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of PhysicsPennsylvania State UniversityUniversity ParkUSA
  5. 5.Department of BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations