Skip to main content
Log in

Quantitative technetium pyrophosphate and cardiovascular magnetic resonance in patients with suspected cardiac amyloidosis

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Quantitation of myocardial 99m Tc-pyrophosphate activity may have high diagnostic accuracy, but its correlation with disease burden is unknown. We examined the relationship between 99m Tc-pyrophosphate quantitation and cardiac magnetic resonance (CMR) measures in patients with suspected transthyretin cardiac amyloidosis (ATTR-CM) or light chain cardiac amyloidosis (AL-CM).

Methods

Consecutive patients who underwent 99mTc-pyrophosphate imaging and CMR were included. ATTR-CM and AL-CM were diagnosed using standard criteria. 99mTc-pyrophosphate images were assessed with standard parameters and quantified with cardiac pyrophosphate activity (CPA) and volume of involvement (VOI). We assessed the association between 99mTc-pyrophosphate image interpretation and CMR tissue characteristics.

Results

Seventy patients were identified, mean age 70.4 ± 11.4 years, with ATTR-CM and AL-CM diagnosed in 22 (31%) and 11 (16%) patients, respectively. In patients with ATTR-CM, there were significant correlations between CPA (r2 = 0.509, P < 0.001) and VOI (r2 = 0.586, P < 0.001) with native myocardial T1 mapping values. Additionally, CPA (adjusted hazard ratio (aHR) 1.04, P = 0.016), VOI (aHR 1.12, P = 0.034), and average myocardial T1 (aHR 1.12, P = 0.025) were associated with incidence of heart failure hospitalization or death.

Conclusion

CPA and VOI were correlated with CMR measures of myocardial fibrosis in patients with ATTR-CM. 99mTc-pyrophosphate quantitation may have a role in ATTR-CM disease staging, guiding treatment, or following response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AL:

Light chain cardiac amyloidosis

CMR:

Cardiovascular magnetic resonance

CPA:

Cardiac pyrophosphate activity

ECV:

Extracellular volume

HCL:

Heart/contralateral ratio

IQR:

Interquartile range

LGE:

Late gadolinium enhancement

LV:

Left ventricle

LVBP:

Left ventricular blood pool

PET:

Positron emission tomography

PSIR:

Phase-sensitive inversion recovery

ROI:

Region of interest

SD:

Standard deviation

SPECT:

Single photon emission computed tomography

Tc:

Technetium

ATTR-CM:

Transthyretin cardiac amyloidosis

VOI:

Volume of involvement

References

  1. Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 2019;73:2872‐91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: A review of diagnosis and therapy. J Am Coll Cardiol 2016;68:1323‐41.

    Article  PubMed  Google Scholar 

  3. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. J Card Fail 2019;25:e1‐39.

    Article  PubMed  Google Scholar 

  4. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195‐201.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sperry BW, Burgett E, Bybee KA, McGhie AI, O’Keefe JH, Saeed IM, et al. Technetium pyrophosphate nuclear scintigraphy for cardiac amyloidosis: Imaging at 1 vs 3 hours and planar vs SPECT/CT. J Nucl Cardiol 2020;27:1802‐7.

    Article  PubMed  Google Scholar 

  6. Miller R, Cadet S, Mah D, Pournazari P, Chan D, Fine N et al. Diagnostic and Prognostic Value of Technetium-99m Pyrophosphate Uptake Quantitation for Transthyretin Cardiac Amyloidosis. J Nucl Cardiol 2020 (In press).

  7. Caobelli F, Braun M, Haaf P, Wild D, Zellweger MJ. Quantitative (99m)Tc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: Feasibility and correlation with visual scores. J Nucl Cardiol 2020;27:1456‐63.

    Article  PubMed  Google Scholar 

  8. Ramsay SC, Cuscaden C. The current status of quantitative SPECT/CT in the assessment of transthyretin cardiac amyloidosis. J Nucl Cardiol 2020;27:1464‐8.

    Article  PubMed  Google Scholar 

  9. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015;132:1570‐9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hur DJ, Dicks DL, Huber S, Mojibian HR, Meadows JL, Seropian SE, et al. Serial native T1 mapping to monitor cardiac response to treatment in light-chain amyloidosis. Circ Cardiovasc Imaging 2016;9:e004770.

    Article  PubMed  Google Scholar 

  11. Pan JA, Kerwin MJ, Salerno M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: A meta-analysis. JACC Cardiovasc Imaging 2020;13:1299‐310.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kyriakou P, Mouselimis D, Tsarouchas A, Rigopoulos A, Bakogiannis C, Noutsias M, et al. Diagnosis of cardiac amyloidosis: A systematic review on the role of imaging and biomarkers. BMC Cardiovasc Disord 2018;18:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016;133:2404‐12.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmadian A, Brogan A, Berman J, Sverdlov AL, Mercier G, Mazzini M, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014;21:925‐39.

    Article  PubMed  Google Scholar 

  15. Miller RJH, Cadet S, Pournazari P, Pope A, Kransdorf E, Hamilton MA et al. Quantitative Assessment of Cardiac Hypermetabolism and Perfusion for Diagnosis of Cardiac Sarcoidosis. J Nucl Cardiol 2020. (in press).

  16. Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, et al. Myocardial T1 mapping with MRI: Comparison of look-locker and MOLLI sequences. J Magn Reson Imaging 2011;34:1367‐73.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. LGE-PSIR is an independent predictor of mortality in cardiac amyloidosis: a 250 patient prospective study. J Cardiovasc Magn Reson 2015;17:O27-O.

    Article  Google Scholar 

  18. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539‐42.

    Article  PubMed  Google Scholar 

  19. Fine NM, Tandon S, Kim HW, Shah DJ, Thompson T, Drangova M, et al. Validation of sub-segmental visual scoring for the quantification of ischemic and nonischemic myocardial fibrosis using late gadolinium enhancement MRI. J Magn Reson Imaging 2013;38:1369‐76.

    Article  PubMed  Google Scholar 

  20. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: A comprehensive review. J Cardiovasc Magn Reson 2016;18:89.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Southern DA, Norris CM, Quan H, Shrive FM, Galbraith PD, Humphries K, et al. An administrative data merging solution for dealing with missing data in a clinical registry: Adaptation from ICD-9 to ICD-10. BMC Med Res Methodol 2008;8:1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cutlip DE, Farb A, et al. 2014 ACC/AHA key data elements and definitions for cardiovascular endpoint events in clinical trials. J Am Coll Cardiol 2015;66:403‐69.

    Article  PubMed  Google Scholar 

  23. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379:1007‐16.

    Article  CAS  PubMed  Google Scholar 

  24. Solomon SD, Adams D, Kristen A, Grogan M, Gonzalez-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 2019;139:431‐43.

    Article  CAS  PubMed  Google Scholar 

  25. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: Predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 2016;1:880‐9.

    Article  PubMed  Google Scholar 

  26. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005;46:1076‐84.

    Article  PubMed  Google Scholar 

  27. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol 2020;27:659‐73.

    Article  PubMed  Google Scholar 

  28. Sikanderkhel S, Liu YH, Liu C, Miller E. Suv quantification of 99mtc-Pyp imaging in Ttr-cardiac amyloidosis using a Czt camera: A new tool in the armamentarium. J Am Coll Cardiol 2018;71:1689.

    Article  Google Scholar 

  29. Glaudemans AW, van Rheenen RW, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid 2014;21:35‐44.

    Article  CAS  PubMed  Google Scholar 

  30. Dorbala S, Park MA, Cuddy S, Singh V, Sullivan K, Kim S, et al. Absolute quantitation of cardiac (99m)Tc-pyrophosphate using cadmium zinc telluride-based SPECT/CT. J Nucl Med 2020;62:716‐22.

    Article  PubMed  Google Scholar 

  31. Morioka M, Takashio S, Nishi M, Tsujita K. Abstract 12230: Correlation of technetium pyrophosphate uptake with cardiac amyloid load, native T1, and extracellular volume in patients with transthyretin cardiac amyloidosis. Circulation 2019;140:A12230-A.

    Google Scholar 

  32. Fontana M, Martinez-Naharro A, Chacko L, Rowczenio D, Gilbertson JA, Whelan CJ, et al. Reduction in CMR derived extracellular volume with patisiran indicates cardiac amyloid regression. JACC Cardiovasc Imaging 2021;14:189‐99.

    Article  PubMed  Google Scholar 

  33. Kholová I, Niessen HWM. Amyloid in the cardiovascular system: A review. J Clin Pathol 2005;58:125‐33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 2019;12:810‐9.

    Article  PubMed  Google Scholar 

  35. Boynton SJ, Geske JB, Dispenzieri A, Syed IS, Hanson TJ, Grogan M, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging 2016;9:680‐6.

    Article  PubMed  Google Scholar 

  36. Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol 2016;68:1014‐20.

    Article  PubMed  Google Scholar 

  37. Maurer MS. Noninvasive identification of ATTRwt cardiac amyloid: The re-emergence of nuclear cardiology. Am J Med 2015;128:1275‐80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kircher M, Ihne S, Brumberg J, Morbach C, Knop S, Kortum KM, et al. Detection of cardiac amyloidosis with (18)F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 2019;46:1407‐16.

    Article  PubMed  Google Scholar 

  39. Manwani R, Page J, Lane T, Burniston M, Skillen A, Lachmann HJ, et al. A pilot study demonstrating cardiac uptake with 18F-florbetapir PET in AL amyloidosis patients with cardiac involvement. Amyloid 2018;25:247‐52.

    Article  CAS  PubMed  Google Scholar 

  40. Cuddy SAM, Bravo PE, Falk RH, El-Sady S, Kijewski MF, Park MA, et al. Improved quantification of cardiac amyloid burden in systemic light chain amyloidosis: Redefining early disease? JACC Cardiovasc Imaging 2020;13:1325‐36.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Masri A, Bukhari S, Ahmad S, Nieves R, Eisele YS, Follansbee W, et al. Efficient 1-hour technetium-99 m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging 2020;13:e010249.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Musumeci M, Cappelli F, Russo D, Tini G, Canepa M, Milandri A, et al. Low sensitivity of bone scintigraphy in detecting Phe64Leu mutation-related transthyretin cardiac amyloidosis. JACC Cardiovasc Imaging 2020;13:1314‐21.

    Article  PubMed  Google Scholar 

  43. Castaño A, DeLuca A, Weinberg R, Pozniakoff T, Blaner WS, Pirmohamed A, et al. Serial scanning with technetium pyrophosphate ((99m)Tc-PYP) in advanced ATTR cardiac amyloidosis. J Nucl Cardiol 2016;23:1355‐63.

    Article  PubMed  Google Scholar 

  44. Scully PR, Morris E, Patel KP, Treibel TA, Burniston M, Klotz E, et al. DPD quantification in cardiac amyloidosis: A novel imaging biomarker. JACC Cardiovasc Imaging 2020;13:1353‐63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

None

Disclosures

This research was supported in part by NIH Grant R01-HL135557. Dr. Fine reports research and consulting support from Pfizer, Akcea, Ionis, Alnylam, and Eidos. Dr. White receives funding from the Calgary Health Trust and Siemens Healthineers and is a shareholder in Cohesic Inc. Dr. Miller reports consulting support from Alnylam and Pfizer. The other authors have no other relevant disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. H. Miller MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

This research was supported in part by NIH Grant R01-HL135557.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshankar, G., White, G.C., Cadet, S. et al. Quantitative technetium pyrophosphate and cardiovascular magnetic resonance in patients with suspected cardiac amyloidosis. J. Nucl. Cardiol. 29, 2679–2690 (2022). https://doi.org/10.1007/s12350-021-02806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-021-02806-4

Keywords

Navigation