Skip to main content
Log in

Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Purpose

18F-NaF-PET/CT can detect mineral metabolism within atherosclerotic plaques. To ascertain whether their 18F-NaF uptake purports progression, this index was compared with subsequent morphologic evolution.

Methods

71 patients underwent two consecutive 18F-NaF-PET/CTs (PET1/PET2). In PET1, non-calcified 18F-NaF hot spots were identified in the abdominal aorta. Their mean/max HU was compared with those of a non-calcified control region (CR) and with corresponding areas in PET2. A target-to-background ratio (TBR), mean density (HU), and calcium score (CS) were calculated on calcified atherosclerotic plaques in PET1 and compared with those in PET2. A VOI including the entire abdominal aorta was drawn; mean TBR and total CS were calculated on PET1 and compared with those PET2.

Results

Hot spots in PET1 (N = 179) had a greater HU than CR (48 ± 8 vs 37 ± 9, P < .01). Mean hot spots HU increased to 59 ± 12 in PET2 (P < .001). New calcifications appeared at the hot spots site in 73 cases (41%). Baseline atherosclerotic plaque’s (N = 375) TBR was proportional to percent HU and CS increase (P < .01 for both). Aortic CS increased (P < .001); the whole-aorta TBR in PET1 correlated with the CS increase between the baseline and the second PET/CT (R = .63, P < .01).

Conclusions

18F-NaF-PET/CT depicts the early stages of plaques development and tracks their evolution over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

18F-NaF-PET/CT:

Sodium fluoride positron emission tomography/X-ray computed tomography

CR:

Control region

HU:

Hounsfield units

CS:

Calcium score

TBR:

Target-to-background ratio

CVD:

Cardiovascular disease

NDHUavg/max%:

Normalized delta-uptake average/max percent

NDCS%:

Normalized delta calcium score percent

References

  1. Doherty TM, Fitzpatrick LA, Inoue D, Qiao JH, Fishbein MC, Detrano RC, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev. 2004;25:629-72.

    Article  CAS  PubMed  Google Scholar 

  2. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22:399-411.

    Article  PubMed  Google Scholar 

  3. Webber BJ, Seguin PG, Burnett DG, Clark LL, Otto JL. Prevalence of and risk factors for autopsy-determined atherosclerosis among US service members, 2001-2011. JAMA. 2012;308:2577-83.

    Article  CAS  PubMed  Google Scholar 

  4. Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J. 2010;40:1-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kannel WB. Bishop lecture. Contribution of the Framingham Study to preventive cardiology. J Am Coll Cardiol. 1990;15:206-11.

    Article  CAS  PubMed  Google Scholar 

  6. Chen G, Levy D. Contributions of the Framingham Heart Study to the epidemiology of coronary heart disease. JAMA Cardiol. 2016;1:825-30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Castellon X, Bogdanova V. Screening for subclinical atherosclerosis by noninvasive methods in asymptomatic patients with risk factors. Clin Interv Aging. 2013;8:573-80.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Otsuka F, Stolzmann P, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-52.

    Article  PubMed  Google Scholar 

  9. Kalampogias A, Siasos G, Oikonomou E, Tsalamandris S, Mourouzis K, Tsigkou V, et al. Basic mechanisms in atherosclerosis: The role of calcium. Med Chem. 2016;12:103-13.

    Article  CAS  PubMed  Google Scholar 

  10. Ruiz JL, Weinbaum S, Aikawa E, Hutcheson JD. Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol. 2016;594:2915-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishnan S, Otaki Y, Doris M, Slipczuk L, Arnson Y, Rubeaux M, et al. Molecular imaging of vulnerable coronary plaque: A pathophysiologic perspective. J Nucl Med. 2017;58:359-64.

    Article  CAS  PubMed  Google Scholar 

  12. Derlin T, Toth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: A dual-tracer PET/CT study. J Nucl Med. 2011;52:1020-7.

    Article  PubMed  Google Scholar 

  13. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: Correlation with atherogenic risk factors. J Nucl Med. 2011;52:362-8.

    Article  PubMed  Google Scholar 

  14. Saboury B, Ziai P, Alavi A. Detection and quantification of molecular calcification by PET/computed tomography: A new paradigm in assessing atherosclerosis. PET Clin. 2011;6:409-15.

    Article  PubMed  Google Scholar 

  15. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51:862-5.

    Article  PubMed  Google Scholar 

  16. Morbelli S, Fiz F, Piccardo A, Picori L, Massollo M, Pestarino E, et al. Divergent determinants of 18F-NaF uptake and visible calcium deposition in large arteries: Relationship with Framingham risk score. Int J Cardiovasc Imaging. 2014;30:439-47.

    Article  PubMed  Google Scholar 

  17. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.

    Article  PubMed  Google Scholar 

  18. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet. 2014;383:705-13.

    Article  PubMed  Google Scholar 

  19. Forsythe RO, Dweck MR, McBride OMB, Vesey AT, Semple SI, Shah ASV, et al. (18)F-Sodium Fluoride Uptake In Abdominal Aortic Aneurysms: The SoFIA(3) study. J Am Coll Cardiol. 2018;71:513-23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cartlidge TRG, Doris MK, Sellers SL, Pawade TA, White AC, Pessotto R, et al. Detection and prediction of bioprosthetic aortic valve degeneration. J Am Coll Cardiol. 2019;73:1107-19.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kwiecinski J, Tzolos E, Adamson PD, Cadet S, Moss AJ, Joshi N, et al. Coronary (18)F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J Am Coll Cardiol. 2020;75:3061-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishiwata Y, Kaneta T, Nawata S, Hino-Shishikura A, Yoshida K, Inoue T. Quantification of temporal changes in calcium score in active atherosclerotic plaque in major vessels by (18)F-sodium fluoride PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:1529-37.

    Article  CAS  PubMed  Google Scholar 

  23. Cecelja M, Moore A, Fogelman I, Frost ML, Blake GM, Chowienczyk P. Evaluation of aortic (18)F-NaF tracer uptake using PET/CT as a predictor of aortic calcification in postmenopausal women: A longitudinal study. JRSM Cardiovasc Dis. 2019;8:2048004019848870.

    PubMed  PubMed Central  Google Scholar 

  24. Li X, Heber D, Cal-Gonzalez J, Karanikas G, Mayerhoefer ME, Rasul S, et al. Association between osteogenesis and inflammation during the progression of calcified plaque evaluated by (18)F-fluoride and (18)F-FDG. J Nucl Med. 2017;58:968-74.

    Article  PubMed  Google Scholar 

  25. Fiz F, Bauckneht M, Piccardo A, Campi C, Nieri A, Piva R, et al. Metabolic and densitometric correlation between atherosclerotic plaque and trabecular bone: an (18)F-natrium-fluoride PET/CT study. Am J Nucl Med Mol Imaging. 2018;8:387-96.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: Possible finding for active atherosclerosis. Radiology. 2003;229:831-7.

    Article  PubMed  Google Scholar 

  27. Fiz F, Morbelli S, Piccardo A, Bauckneht M, Ferrarazzo G, Pestarino E, et al. (1)(8)F-NaF uptake by atherosclerotic plaque on PET/CT imaging: Inverse correlation between calcification density and mineral metabolic activity. J Nucl Med. 2015;56:1019-23.

    Article  CAS  PubMed  Google Scholar 

  28. Yoon WJ, Crisostomo P, Halandras P, Bechara CF, Aulivola B. The use of the agatston calcium score in predicting carotid plaque vulnerability. Ann Vasc Surg. 2019;54:22-6.

    Article  PubMed  Google Scholar 

  29. O’Connor SD, Graffy PM, Zea R, Pickhardt PJ. Does nonenhanced CT-based quantification of abdominal aortic calcification outperform the Framingham Risk Score in predicting cardiovascular events in asymptomatic adults? Radiology. 2019;290:108-15.

    Article  PubMed  Google Scholar 

  30. Kwiecinski J, Dey D, Cadet S, Lee SE, Tamarappoo B, Otaki Y, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21:58-66.

    Article  PubMed  Google Scholar 

  31. Cal-Gonzalez J, Li X, Heber D, Rausch I, Moore SC, Schafers K, et al. Partial volume correction for improved PET quantification in (18)F-NaF imaging of atherosclerotic plaques. J Nucl Cardiol. 2018;25:1742-56.

    Article  PubMed  Google Scholar 

  32. Blomberg BA, Thomassen A, de Jong PA, Simonsen JA, Lam MG, Nielsen AL, et al. Impact of personal characteristics and technical factors on quantification of sodium 18F-fluoride uptake in human arteries: Prospective evaluation of healthy subjects. J Nucl Med. 2015;56:1534-40.

    Article  CAS  PubMed  Google Scholar 

  33. Jenkins WS, Vesey AT, Shah AS, Pawade TA, Chin CW, White AC, et al. Valvular (18)F-fluoride and (18)F-fluorodeoxyglucose uptake predict disease progression and clinical outcome in patients with aortic stenosis. J Am Coll Cardiol. 2015;66:1200-1.

    Article  PubMed  Google Scholar 

  34. Dweck MR, Jenkins WS, Vesey AT, Pringle MA, Chin CW, Malley TS, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging. 2014;7:371-8.

    Article  PubMed  Google Scholar 

  35. Kwiecinski J, Slomka PJ, Dweck MR, Newby DE, Berman DS. Vulnerable plaque imaging using (18)F-sodium fluoride positron emission tomography. Br J Radiol. 2019. https://doi.org/10.1259/bjr.20190797.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60:299-303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S, Moe S, et al. (18)F-NaF and (18)F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging. 2018;45:2190-200.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hoilund-Carlsen PF, Sturek M, Alavi A, Gerke O. Atherosclerosis imaging with (18)F-sodium fluoride PET: state-of-the-art review. Eur J Nucl Med Mol Imaging. 2019. https://doi.org/10.1007/s00259-019-04603-1.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oliveira-Santos M, Castelo-Branco M, Silva R, Gomes A, Chichorro N, Abrunhosa A, et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects—A subclinical atherosclerosis imaging study with (18)F-NaF PET-CT. Atherosclerosis. 2017;260:41-6.

    Article  PubMed  CAS  Google Scholar 

  41. Fiz F, Morbelli S, Bauckneht M, Piccardo A, Ferrarazzo G, Nieri A, et al. Correlation between thoracic aorta 18F-natrium fluoride uptake and cardiovascular risk. World J Radiol. 2016;8:82-9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Domingues C, Joao Ferreira M, Silva R, Oliveira-Santos M, Andreia G, Chichorro N, et al. Aortic valve microcalcification and cardiovascular risk: An exploratory study using sodium fluoride in high cardiovascular risk patients. Int J Cardiovasc Imaging. 2020;36:1593-8.

    Article  PubMed  Google Scholar 

  43. Blomberg BA, Thomassen A, de Jong PA, Lam MGE, Diederichsen ACP, Olsen MH, et al. Coronary fluorine-18-sodium fluoride uptake is increased in healthy adults with an unfavorable cardiovascular risk profile: Results from the CAMONA study. Nucl Med Commun. 2017;38:1007-14.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors’ Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Francesco Fiz, Gianluca Bottoni, Arnoldo Piccardo, Silvia Morbelli and Michele Piana. The first draft of the manuscript was written by Francesco Fiz and all authors contributed to the manuscript revision. All authors read and approved the final manuscript.

Funding

The present work received no funding.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Disclosures

Dr. Francesco Fiz acts as a paid external consultant for the firm “Sharp&Dohme LLC”. All other authors have no conflict of interest to disclose.

Ethical Approval

Ethical approval was waived by the regional Ethics Committee (Comitato Etico Regionale – Regione Liguria) in view of the retrospective nature of the study and all the procedures being performed were part of the routine care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by guest editor Nagara Tamaki, MD.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiz, F., Piccardo, A., Morbelli, S. et al. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study. J. Nucl. Cardiol. 29, 1713–1723 (2022). https://doi.org/10.1007/s12350-021-02556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-021-02556-3

Keywords

Navigation