Skip to main content
Log in

The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The objective of this study was to evaluate the accuracy of global MBF and MFR quantitation performed by myocardial perfusion scintigraphy (MPS) for the detection of multivessel coronary artery disease (CAD).

Methods

52 CAD patients underwent CZT MPS, with the evaluation of MBF and MFR, followed by invasive coronary angiography (ICA). According to MPS and ICA results, all patients were divided into three groups: (1) non-obstructive CAD and normal MPS scan (control group) (n = 7), (2) one vessel disease (1VD) (n = 16), (3) multivessel disease (MVD) (n = 29).

Results

Global absolute MBF and MFR were significantly reduced in MVD patients as compared to those with 1VD [0.93 (IQR 0.76; 1.39) vs 1.94 (1.37; 2.21) mL·min−1·g−1, P = .00012] and [1.4 (IQR 1.02; 1.85) vs 2.3 (1.8; 2.67), P = . 0 004], respectively. The Syntax score correlated with global stress MBF (ρ = − 0.64; P < .0001) and MFR (ρ = − 0.53; P = .0003). ROC analysis showed higher sensitivity and specificity for stress MBF and MFR compared with semiquantitative MPS stress evaluation. Multivariate regression analysis showed that only stress MBF [OR (95% CI) 0.59 (0.42-0.82); P < .0003] was an independent predictor of MVD.

Conclusions

Quantitative myocardial blood flow values assessed with the use of CZT camera may identify high-risk patients, such as those with multivessel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

AC:

Attenuation correction

CAD:

Coronary artery disease

CZT:

Cadmium-zinc-telluride

FFR:

Fractional flow reserve

ICA:

Invasive coronary angiography

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MPS:

Myocardial perfusion scintigraphy

MVD:

Multivessel disease

NAC:

Non-attenuation correction

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

References

  1. Gimelli A, Liga R, Duce V, Kusch A, Clemente A, Marzullo P. Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study. J Nucl Cardiol 2017;24:687-95. https://doi.org/10.1007/s12350-015-0360-8.

    Article  PubMed  Google Scholar 

  2. Schindler TH. Myocardial blood flow: Putting it into clinical perspective. J Nucl Cardiol 2016;23:1056-71. https://doi.org/10.1007/s12350-015-0372-4.

    Article  PubMed  Google Scholar 

  3. Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging 2017;33:1021-31. https://doi.org/10.1007/s10554-017-1084-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-903. https://doi.org/10.2967/jnumed.112.107417.

    Article  PubMed  Google Scholar 

  5. Ben Bouallègue F, Roubille F, Lattuca B, Cung TT, Macia J-C, Gervasoni R, et al. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: Correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med 2015;56:1712-7. https://doi.org/10.2967/jnumed.114.143164.

    Article  CAS  PubMed  Google Scholar 

  6. Agostini D, Roule V, Nganoa C, Roth N, Baavour R, Parienti J-J, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-Sestamibi CZT-SPECT camera: Head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079-90. https://doi.org/10.1007/s00259-018-3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zavadovsky KV, Mochula AV, Boshchenko AA, Vrublevsky AV, Baev AE, Krylov AL, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01678-z.

    Article  PubMed  Google Scholar 

  8. Nkoulou R, Fuchs TA, Pazhenkottil AP, Kuest SM, Ghadri JR, Stehli J, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium–zinc–telluride detectors using 99mTc-tetrofosmin: Head-to-head comparison with 13N-ammonia PET. J Nucl Med 2016;57:1887-92. https://doi.org/10.2967/jnumed.115.165498.

    Article  CAS  PubMed  Google Scholar 

  9. Miyagawa M, Nishiyama Y, Uetani T, Ogimoto A, Ikeda S, Ishimura H, et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol 2017;244:347-53. https://doi.org/10.1016/j.ijcard.2017.06.012.

    Article  PubMed  Google Scholar 

  10. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39. https://doi.org/10.1007/s12350-015-0387-x.

    Article  PubMed  Google Scholar 

  11. Farooq V, Van Klaveren D, Steyerberg EW, Meliga E, Vergouwe Y, Chieffo A, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: Development and validation of SYNTAX score II. Lancet 2013;381:639-50. https://doi.org/10.1016/s0140-6736(13)60108-7.

    Article  PubMed  Google Scholar 

  12. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging. Circulation 2002;105:539-42. https://doi.org/10.1161/hc0402.102975.

    Article  PubMed  Google Scholar 

  13. Wells RG, Marvin B. Measuring SPECT myocardial blood flow at the University of Ottawa Heart Institute. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02102-7.

    Article  PubMed  Google Scholar 

  14. Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 1989;65:632-9. https://doi.org/10.1161/01.res.65.3.632.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701-12.

    CAS  PubMed  Google Scholar 

  16. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009. https://doi.org/10.2967/jnumed.108.054478.

    Article  PubMed  Google Scholar 

  17. Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): Clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther 2017;7:206-18. https://doi.org/10.21037/cdt.2017.04.10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC, et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-Sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging 2014;41:2294-306. https://doi.org/10.1007/s00259-014-2881-9.

    Article  CAS  PubMed  Google Scholar 

  19. Giubbini R, Bertoli M, Durmo R, Bonacina M, Peli A, Faggiano I, et al. Comparison between N13NH3-PET and 99mTc-tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01939-x.

    Article  PubMed  Google Scholar 

  20. Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, De Kemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014;55:1685-91. https://doi.org/10.2967/jnumed.114.139782.

    Article  CAS  PubMed  Google Scholar 

  21. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: Technical aspects and clinical applications. J Nucl Med 2005;46:75-88.

    PubMed  Google Scholar 

  22. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease: Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013. https://doi.org/10.1016/j.jacc.2013.07.076.

    Article  PubMed  Google Scholar 

  23. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830-40. https://doi.org/10.1056/nejmra061889.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta A, Taqueti VR, van de Hoef TP, Bajaj NS, Bravo PE, Murthy VL, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation 2017;136:2325-36. https://doi.org/10.1161/circulationaha.117.029992.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bom MJ, van Diemen PA, Driessen RS, Everaars H, Schumacher SP, Wijmenga J-T, et al. Prognostic value of [15O]H2O positron emission tomography-derived global and regional myocardial perfusion. Eur Heart J Cardiovasc Imaging 2019. https://doi.org/10.1093/ehjci/jez258.

    Article  PubMed  Google Scholar 

  26. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24. https://doi.org/10.1161/circulationaha.111.050427.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Joutsiniemi E, Saraste A, Pietilä M, Mäki M, Kajander S, Ukkonen H, et al. Absolute flow or myocardial flow reserve for the detection of significant coronary artery disease? Eur Heart J Cardiovasc Imaging 2014;15:659-65. https://doi.org/10.1093/ehjci/jet274.

    Article  PubMed  Google Scholar 

  28. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [15O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464-75. https://doi.org/10.1016/j.jacc.2014.05.069.

    Article  PubMed  Google Scholar 

  29. Juárez-Orozco LE, Alexanderson E, Dierckx RA, Boersma HH, Hillege JL, Zeebregts CJ, et al. Stress myocardial blood flow correlates with ventricular function and synchrony better than myocardial perfusion reserve: A nitrogen-13 ammonia PET study. J Nucl Cardiol 2018;25:797-806. https://doi.org/10.1007/s12350-016-0669-y.

    Article  PubMed  Google Scholar 

  30. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: Added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4. https://doi.org/10.2967/jnumed.111.101840.

    Article  CAS  PubMed  Google Scholar 

  31. Kajander SA, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging 2011;4:678-84. https://doi.org/10.1161/circimaging.110.960732.

    Article  PubMed  Google Scholar 

  32. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521-8. https://doi.org/10.1016/j.nuclcard.2007.05.008.

    Article  PubMed  Google Scholar 

  33. Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: A feasibility study. J Nucl Med 2013;54:873-9. https://doi.org/10.2967/jnumed.112.109652.

    Article  CAS  PubMed  Google Scholar 

  34. Hyafil F, Gimelli A, Slart RHJA, Georgoulias P, Rischpler C, Lubberink M, et al. EANM procedural guidelines for myocardial perfusion scintigraphy using cardiac-centered gamma cameras. Eur J Hybrid Imaging 2019;3:11. https://doi.org/10.1186/s41824-019-0058-2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis 2015;57:588-606. https://doi.org/10.1016/j.pcad.2015.01.001.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Authors did not have financial, personal or professional relationships with other people or organizations. Authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Zavadovsky MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Funding

Contribution of Evgeniy A. Nesterov was funded by Tomsk Polytechnic University Competitiveness Enhancement Program Grant (VIU-Laboratory No. 31 YAR-221/2018, RFMEFI62019X0001).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavadovsky, K.V., Mochula, A.V., Maltseva, A.N. et al. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. J. Nucl. Cardiol. 29, 1051–1063 (2022). https://doi.org/10.1007/s12350-020-02395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02395-8

Keywords

Navigation