Abstract
Hybrid PET/MR imaging is an emerging imaging modality combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in the same system. Since the introduction of clinical PET/MRI in 2011, it has had some impact (e.g., imaging the components of inflammation in myocardial infarction), but its role could be much greater. Many opportunities remain unexplored and will be highlighted in this review. The inflammatory process post-myocardial infarction has many facets at a cellular level which may affect the outcome of the patient, specifically the effects on adverse left ventricular remodeling, and ultimately prognosis. The goal of inflammation imaging is to track the process non-invasively and quantitatively to determine the best therapeutic options for intervention and to monitor those therapies. While PET and MRI, acquired separately, can image aspects of inflammation, hybrid PET/MRI has the potential to advance imaging of myocardial inflammation. This review contains a description of hybrid PET/MRI, its application to inflammation imaging in myocardial infarction and the challenges, constraints, and opportunities in designing data collection protocols. Finally, this review explores opportunities in PET/MRI: improved registration, partial volume correction, machine learning, new approaches in the development of PET and MRI pulse sequences, and the use of novel injection strategies.
This is a preview of subscription content, access via your institution.






Abbreviations
- AMI:
-
Acute myocardial infarction
- MI:
-
Myocardial infarction
- IOT:
-
Infarcted obstructed tissue
- INOT:
-
Infarcted not obstructed tissue
- RT:
-
Remote tissue
- BOLD:
-
Blood oxygen level dependent
- CEST:
-
Chemical exchange saturation transfer
- SPIO:
-
Superparamagnetic iron oxide
- TSPO:
-
Translocator protein
References
- 1.
Braunwald E. Shattuck lecture–cardiovascular medicine at the turn of the millennium: Triumphs, concerns, and opportunities. N Engl J Med. 1997;337:1360-9. https://doi.org/10.1056/NEJM199711063371906.
- 2.
Braunwald E. Research advances in heart failure: A compendium. Circ Res. 2013;113:633-45. https://doi.org/10.1161/CIRCRESAHA.113.302254.
- 3.
Eitel I, Kubusch K, Strohm O, Desch S, Mikami Y, De Waha S, et al. Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ Cardiovasc Imaging. 2011;4:354-62. https://doi.org/10.1161/CIRCIMAGING.110.960500.
- 4.
Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: Experimental observations and clinical implications. Circulation. 1990;81:116-72. https://doi.org/10.1161/01.CIR.81.4.1161.
- 5.
Ganame J, Messalli G, Dymarkowski S, Rademakers FE, Desmet W, Van De Werf F, et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J. 2009;30:1440-9. https://doi.org/10.1093/eurheartj/ehp093.
- 6.
Kali A, Cokic I, Tang R, Dohnalkova A, Kovarik L, Yang HJ, et al. Persistent microvascular obstruction after myocardial infarction culminates in the confluence of ferric iron oxide crystals, proinflammatory burden, and adverse remodeling. Circ Cardiovasc Imaging. 2016;9:e004996. https://doi.org/10.1161/CIRCIMAGING.115.004996.
- 7.
Kali A, Tang RLQ, Kumar A, Min JK, Dharmakumar R. Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2*. Radiology. 2013;269:387-95. https://doi.org/10.1148/radiol.13122397.
- 8.
Kali A, Kumar A, Cokic I, Tang RLQ, Tsaftaris SA, Friedrich MG, et al. Chronic manifestation of postreperfusion intramyocardial hemorrhage as regional iron deposition: A cardiovascular magnetic resonance study with ex vivo validation. Circ Cardiovasc Imaging. 2013;6:218-28. https://doi.org/10.1161/CIRCIMAGING.112.000133.
- 9.
Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255-65. https://doi.org/10.1038/nrcardio.2014.28.
- 10.
Weir RAP, Miller AM, Murphy GEJ, Clements S, Steedman T, Connell JMC, et al. Serum soluble ST2: A potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55:243-50. https://doi.org/10.1016/j.jacc.2009.08.047.
- 11.
Fishbein MC, Maclean D, Maroko PR. The histopathologic evolution of myocardial infarction. Chest. 1978;73:843-9. https://doi.org/10.1378/chest.73.6.843.
- 12.
Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31-47. https://doi.org/10.1016/S0008-6363(01)00434-5.
- 13.
Hofmann U, Knorr S, Vogel B, Weirather J, Frey A, Ertl G, et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ Hear Fail. 2014;7:822-30. https://doi.org/10.1161/CIRCHEARTFAILURE.113.001020.
- 14.
Chatelain P, Latour JG, Tran D, de Lorgeril M, Dupras G, Bourassa M. Neutrophil accumulation in experimental myocardial infarcts: Relation with extent of injury and effect of reperfusion. Circulation. 1987;75:1083-90. https://doi.org/10.1161/01.CIR.75.5.1083.
- 15.
Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, et al. Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol. 2004;164:665-77. https://doi.org/10.1016/S0002-9440(10)63154-9.
- 16.
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41:21-35. https://doi.org/10.1016/j.immuni.2014.06.013.
- 17.
Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci. 2014;111:16029-34. https://doi.org/10.1073/pnas.1406508111.
- 18.
Serhan CN, Savill J. Resolution of inflammation: The beginning programs the end. Nat Immunol. 2005;6:1191-7. https://doi.org/10.1038/ni1276.
- 19.
Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316-20. https://doi.org/10.1126/science.aaa8064.
- 20.
Yan Y, Gause KT, Kamphuis MMJ, Ang CS, O’Brien-Simpson NM, Lenzo JC, et al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano. 2013;7:10960-70. https://doi.org/10.1021/nn404481f.
- 21.
Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity. 2013;39:806-18. https://doi.org/10.1016/j.immuni.2013.10.010.
- 22.
Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612-6. https://doi.org/10.1126/science.1175202.
- 23.
Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35:1066-70. https://doi.org/10.1161/ATVBAHA.114.304652.
- 24.
Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, et al. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol. 2013;14:821-30. https://doi.org/10.1038/ni.2638.
- 25.
Koelwyn GJ, Corr EM, Erbay E, Moore KJ. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol. 2018;19:526-37. https://doi.org/10.1038/s41590-018-0113-3.
- 26.
Tavakoli S, Zamora D, Ullevig S, Asmis R. Bioenergetic profiles diverge during macrophage polarization: Implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J Nucl Med. 2013;54:1661-7. https://doi.org/10.2967/jnumed.112.119099.
- 27.
Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol. 2010;176:2177-87. https://doi.org/10.2353/ajpath.2010.090759.
- 28.
Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110:159-73. https://doi.org/10.1161/CIRCRESAHA.111.243162.
- 29.
Seropian IM, Toldo S, Van Tassell BW, Abbate A. Anti-inflammatory strategies for ventricular remodeling following St-segment elevation acute myocardial infarction. J Am Coll Cardiol. 2014;63:1593-603. https://doi.org/10.1016/j.jacc.2014.01.014.
- 30.
Satomi T, Ogawa M, Mori I, Ishino S, Kubo K, Magata Y, et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med. 2013;54:999-1004. https://doi.org/10.2967/jnumed.112.110551.
- 31.
Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015;34:82-100. https://doi.org/10.3109/08830185.2014.969421.
- 32.
Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol. 2010;40:824-35. https://doi.org/10.1002/eji.200939889.
- 33.
Corna G, Campana L, Pignatti E, Castiglioni A, Tagliafico E, Bosurgi L, et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica. 2010;95:1814-22. https://doi.org/10.3324/haematol.2010.023879.
- 34.
Goldhawk D, Gelman N, Sengupta A, Prato F. The interface between iron metabolism and gene-based iron contrast for MRI. Magn Reson Insights. 2015;8:9-14. https://doi.org/10.4137/mri.s23555.
- 35.
Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation. 1994;90:854-67. https://doi.org/10.1161/01.CIR.90.2.854.
- 36.
Everaars H, Robbers LFHJ, Götte M, Croisille P, Hirsch A, Teunissen PFA, et al. Strain analysis is superior to wall thickening in discriminating between infarcted myocardium with and without microvascular obstruction. Eur Radiol. 2018;28:5171-81. https://doi.org/10.1007/s00330-018-5493-0.
- 37.
Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with imaging: Basic facts and implementation. RadioGraphics. 2002;22:651-71.
- 38.
Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42:870-86. https://doi.org/10.1002/jmri.24856.
- 39.
Garcia J, Sheitt H, Bristow MS, Lydell C, Howarth AG, Heydari B, et al. Left atrial vortex size and velocity distributions by 4D flow MRI in patients with paroxysmal atrial fibrillation: Associations with age and CHA2 DS2-VASc risk score. J Magn Reson Imaging. 2019. https://doi.org/10.1002/jmri.26876.
- 40.
Thornhill RE, Prato FS, Pereira RS, Wisenberg G, Sykes J. Examining a canine model of stunned myocardium with Gd-DTPA-enhanced MRI. Magn Reson Med. 2001;45:864-71. https://doi.org/10.1002/mrm.1115.
- 41.
Thornhill RE, Prato FS, Wisenberg G, White JA, Nowell J, Sauer A. Feasibility of the single-bolus strategy for measuring the partition coefficient of Gd-DTPA in patients with myocardial infarction: Independence of image delay time and maturity of scar. Magn Reson Med. 2006;55:780-9. https://doi.org/10.1002/mrm.20830.
- 42.
Pereira RS, Prato FS, Sykes J, Wisenberg G. Assessment of myocardial viability using MRI during a constant infusion of GD-DTPA: Further studies at early and late periods of reperfusion. Magn Reson Med. 1999;42:60-8. https://doi.org/10.1002/(SICI)1522-2594(199907)42:1%3c60:AID-MRM10%3e3.0.CO;2-9.
- 43.
Flacke SJ, Fischer SE. Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology. 2001;218:703-10.
- 44.
Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992-2002. https://doi.org/10.1161/01.CIR.100.19.1992.
- 45.
Lekx KS, Prato FS, Sykes J, Wisenberg G. The partition coefficient of Gd-DTPA reflects maintained tissue viability in a canine model of chronic significant coronary stenosis. J Cardiovasc Magn Reson. 2004;6:33-42. https://doi.org/10.1081/JCMR-120027803.
- 46.
Pereira RS, Wisenberg G, Prato FS, Yvorchuk K. Clinical assessment of myocardial viability using MRI during a constant infusion of Gd-DTPA. Magn Reson Mater Physics, Biol Med. 2000;11:104-13. https://doi.org/10.1016/S1352-8661(00)00093-4.
- 47.
Wu KC, Heldman AW, Brinker JA, Hare JM, Lima JAC. Microvascular obstruction after nonsurgical septal reduction for the treatment of hypertrophic cardiomyopathy. Circulation. 2001;104:1868. https://doi.org/10.1161/hc4001.096355.
- 48.
Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445-53. https://doi.org/10.1016/s1062-1458(01)00166-0.
- 49.
Kali A, Cokic I, Tang RLQ, Yang HJ, Sharif B, Marbán E, et al. Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T. Circ Cardiovasc Imaging. 2014;7:471-81. https://doi.org/10.1161/CIRCIMAGING.113.001541.
- 50.
Kali A, Choi EY, Sharif B, Kim YJ, Bi X, Spottiswoode B, et al. Native T1 mapping by 3-T CMR imaging for characterization of chronic myocardial infarctions. JACC Cardiovasc Imaging. 2015;8:1019-30. https://doi.org/10.1016/j.jcmg.2015.04.018.
- 51.
Wang G, Yang H-J, Kali A, Cokic I, Tang R, Xie G, et al. Influence of myocardial hemorrhage on staging of reperfused myocardial infarctions with T2 cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2019;12:693-703. https://doi.org/10.1016/j.jcmg.2018.01.018.
- 52.
Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging. 2004;19:758-70. https://doi.org/10.1002/jmri.20065.
- 53.
Bellamy DD, Pereira RS, McKenzie CA, Prato FS, Drost DJ, Sykes J, et al. Gd-DTPA bolus tracking in the myocardium using T1 fast acquisition relaxation mapping (T1 FARM). Magn Reson Med. 2001;46:555-64. https://doi.org/10.1002/mrm.1227.
- 54.
Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:28. https://doi.org/10.1186/1532-429X-13-28x.
- 55.
Papanastasiou G, Williams MC, Kershaw LE, Dweck MR, Alam S, Mirsadraee S, et al. Measurement of myocardial blood flow by cardiovascular magnetic resonance perfusion: Comparison of distributed parameter and Fermi models with single and dual bolus. J Cardiovasc Magn Reson. 2015. https://doi.org/10.1186/s12968-015-0125-1.
- 56.
Tong CY, Prato FS, Wisenberg G, Lee TY, Carroll E, Sandler D, et al. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med. 1993;30:337-46. https://doi.org/10.1002/mrm.1910300310.
- 57.
Maddahi J, Packard RRS. Cardiac PET perfusion tracers: Current status and future directions. Semin Nucl Med. 2014;44:333-43. https://doi.org/10.1053/j.semnuclmed.2014.06.011.
- 58.
Kunze KP, Rischpler C, Hayes C, Ibrahim T, Laugwitz KL, Haase A, et al. Measurement of extracellular volume and transit time heterogeneity using contrast enhanced myocardial perfusion MRI in patients after acute myocardial infarction. Magn Reson Med. 2017;77:2320-30. https://doi.org/10.1002/mrm.26320.
- 59.
Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981;63:1259-72. https://doi.org/10.1161/01.CIR.63.6.1259.
- 60.
Li D, Dhawale P, Rubin PJ, Haacke EM, Gropler RJ. Myocardial signal response to dipyridamole and dobutamine: Demonstration of the BOLD effect using a doubleecho gradient-echo sequence. Magn Reson Med. 1996;36:16-20. https://doi.org/10.1002/mrm.1910360105.
- 61.
Yang H-J, Ilkary O, Dey D, Sykes J, Klein M, Butler J, et al. Accurate needle-free assessment of myocardial oxygenation for ischemic heart disease. Sci Transl Med. 2019;11:eaat4407.
- 62.
Van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): What is in a name and what isn’t ? Magn Reson Med. 2011;65:927-48. https://doi.org/10.1002/mrm.22761.
- 63.
Liu G, Song X, Chan KWY, McMahon MT. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed. 2013;26:810-28. https://doi.org/10.1002/nbm.2899.
- 64.
Vinogradov E, Sherry AD, Lenkinski RE. CEST: From basic principles to applications, challenges and opportunities. J Magn Reson. 2013;229:155-72. https://doi.org/10.1016/j.jmr.2012.11.024.
- 65.
Jones CK, Schlosser MJ, Van Zijl PCM, Pomper MG, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56:585-92. https://doi.org/10.1002/mrm.20989.
- 66.
Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18:302-6. https://doi.org/10.1038/nm.2615.
- 67.
Haris M, Nanga RRPR, Singh A, Cai K, Kogan F, Hariharan H, et al. Exchange rates of creatine kinase metabolites: Feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed. 2013;25:1305-9. https://doi.org/10.1002/nbm.2792.Exchange.
- 68.
Lindeman LR, Randtke EA, High RA, Jones KM, Howison CM, Pagel MD. A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH. Magn Reson Med. 2018;79:2766-72. https://doi.org/10.1002/mrm.26924.
- 69.
Jones KM, Randtke EA, Yoshimaru ES, Howison CM, Chalasani P, Klein RR, et al. Clinical translation of tumor acidosis measurements with AcidoCEST MRI. Mol Imaging Biol. 2017;19:617-25. https://doi.org/10.1007/s11307-016-1029-7.
- 70.
Chan KWY, McMahon MT, Kato Y, Liu G, Bulte JWM, Bhujwalla ZM, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med. 2012;68:1764-73. https://doi.org/10.1002/mrm.24520.
- 71.
Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19:1067-72. https://doi.org/10.1038/nm.3252.
- 72.
Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep. 2013;3:3045. https://doi.org/10.1038/srep03045.
- 73.
Jones KM, Pollard AC, Pagel MD. Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging. 2018;47:11-27. https://doi.org/10.1002/jmri.25838.
- 74.
Haris M, Singh A, Cai K, Kogan F, McGarvey J, Debrosse C, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med. 2014;20:209-14. https://doi.org/10.1038/nm.3436.
- 75.
Zhou Z, Nguyen C, Chen Y, Shaw JL, Deng Z, Xie Y, et al. Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart. J Cardiovasc Magn Reson. 2017;19:95. https://doi.org/10.1186/s12968-017-0411-1.
- 76.
Pumphrey A, Yang Z, Ye S, Powell DK, Thalman S, Watt DS, et al. Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging. NMR Biomed. 2016;29:74-83. https://doi.org/10.1002/nbm.3451.
- 77.
Petz A, Grandoch M, Gorski DJ, Abrams M, Piroth MA, Schneckmann R, et al. Cardiac hyaluronan synthesis is critically involved in the cardiac macrophage response and promotes healing after ischemia reperfusion injury. Circ Res. 2019;124:1433-47. https://doi.org/10.1161/CIRCRESAHA.118.313285.
- 78.
Bulte JWM, Daldrup-Link HE. Clinical tracking of cell transfer and cell transplantation: Trials and tribulations. Radiology. 2018. https://doi.org/10.1148/radiol.2018180449.
- 79.
Suzuki Y, Cunningham CH, Noguchi KI, Chen IY, Weissman IL, Yeung AC, et al. In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off resonance positive contrast. Magn Reson Med. 2008;60:1269-75. https://doi.org/10.1002/mrm.21816.
- 80.
Makela AV, Foster PJ. Imaging macrophage distribution and density in mammary tumors and lung metastases using fluorine-19 MRI cell tracking. Magn Reson Med. 2018;80:1138-47. https://doi.org/10.1002/mrm.27081.
- 81.
Rothe M, Jahn A, Weiss K, Hwang JH, Szendroedi J, Kelm M, et al. In vivo 19 F MR inflammation imaging after myocardial infarction in a large animal model at 3 T. Magn Reson Mater Physics, Biol Med. 2019;32:5-13. https://doi.org/10.1007/s10334-018-0714-8.
- 82.
Bönner F, Merx MW, Klingel K, Begovatz P, Flögel U, Sager M, et al. Monocyte imaging after myocardial infarction with 19FMRI at 3 T: A pilot study in explanted porcine hearts. Eur Heart J Cardiovasc Imaging. 2015;16:612-20. https://doi.org/10.1093/ehjci/jev008.
- 83.
Dassanayake PSB, Goldhawk DE. Monocyte MRI relaxation rates are regulated by extracellular iron and hepcidin. MSc Thesis, West University; 2019
- 84.
Liu L, Alizadeh K, Donnelly SC, Dassanayake P, Hou TT, McGirr R, et al. MagA expression attenuates iron export activity in undifferentiated multipotent P19 cells. PLoS ONE. 2019;14:1-19. https://doi.org/10.1371/journal.pone.0217842.
- 85.
Yang HJ, Sharif B, Pang J, Kali A, Bi X, Cokic I, et al. Free-breathing, motioncorrected, highly efficient whole heart T2 mapping at 3T with hybrid radial-cartesian trajectory. Magn Reson Med. 2016;75:126-36. https://doi.org/10.1002/mrm.25576.
- 86.
Goldhawk DE, Rohani R, Sengupta A, Gelman N, Prato FS. Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:378-88. https://doi.org/10.1002/wnan.1165.
- 87.
Goldhawk DE, Gelman N, Thompson RT, Prato FS. Forming magnetosome-like nanoparticles in mammalian cells for molecular MRI. In: Design and applications of nanoparticles in biomedical imaging; 2017. p. 187-203
- 88.
Ylä-Herttuala S, Baker AH. Cardiovascular gene therapy: Past, present, and future. Mol Ther. 2017;25:1095-106. https://doi.org/10.1016/j.ymthe.2017.03.027.
- 89.
Wollenweber T, Bengel FM. Cardiac molecular imaging. Semin Nucl Med. 2014;44:386-97. https://doi.org/10.1053/j.semnuclmed.2014.05.002.
- 90.
Larson SR, Pieper JA, Hulten EA, Ficaro EP, Corbett JR, Murthy VL, et al. Characterization of a highly effective preparation for suppression of myocardial glucose utilization. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01786-w.
- 91.
Borchert T, Beitar L, Langer LBN, Polyak A, Wester H-J, Ross TL, et al. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01929-z.
- 92.
Wisenberg G, Thiessen JD, Pavlovsky W, Butler J, Wilk B, Prato FS. Same day comparison of PET/CT and PET/MR in patients with cardiac sarcoidosis. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-018-01578-8.
- 93.
Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: Joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med. 2018;59:273-93. https://doi.org/10.2967/jnumed.117.201368.
- 94.
Rust TC, DiBella EVR, McGann CJ, Christian PE, Hoffman JM, Kadrmas DJ. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows. Phys Med Biol. 2006;51:5347-62. https://doi.org/10.1088/0031-9155/51/20/018.
- 95.
Ory D, Celen S, Verbruggen A, Bormans G. PET radioligands for in vivo visualization of neuroinflammation. Curr Pharm Des. 2014;20:5897-913. https://doi.org/10.2174/1381612820666140613120212.
- 96.
Vivash L, OBrien TJ. Imaging microglial activation with TSPO PET: Lighting up neurologic diseases? J Nucl Med. 2015;57:165-8. https://doi.org/10.2967/jnumed.114.141713.
- 97.
Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71:263-75. https://doi.org/10.1016/j.jacc.2017.11.024.
- 98.
Van De Wiele C, Sathekge M, Maes A. Targeting monocytes and macrophages by means of SPECT and PET. Q J Nucl Med Mol Imaging. 2014;58:269-75.
- 99.
Bansal A, Pandey MK, Demirhan YE, Nesbitt JJ, Crespo-Diaz RJ, Terzic A, et al. Novel 89Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Res. 2015. https://doi.org/10.1186/s13550-015-0098-y.
- 100.
Prato FS, Butler J, Sykes J, Keenliside L, Blackwood KJ, Thompson RT, et al. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction? J Nucl Med. 2015;56:299-304. https://doi.org/10.2967/jnumed.114.147835.
- 101.
Blackwood KJ, Lewden B, Wells RG, Sykes J, Stodilka RZ, Wisenberg G, et al. In vivo SPECT quantification of transplanted cell survival after engraftment using 111In-tropolone in infarcted canine myocardium. J Nucl Med. 2009;50:927-35. https://doi.org/10.2967/jnumed.108.058966.
- 102.
Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation. 2007;116:38-45. https://doi.org/10.1161/CIRCULATIONAHA.106.680231.
- 103.
Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, et al. In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol. 2011;13:303-13. https://doi.org/10.1007/s11307-010-0359-0.
- 104.
Parashurama N, Ahn BC, Ziv K, Ito K, Paulmurugan R, Willmann JK, et al. Multimodality molecular imaging of cardiac cell transplantation: Part I Reporter gene design, characterization, and optical in vivo imaging of bone marrow stromal cells after myocardial infarction. Radiology. 2016;280:815-25. https://doi.org/10.1148/radiol.2016140049.
- 105.
Miyagawa M, Anton M, Haubner R, Simoes MV, Städele C, Erhardt W, et al. PET of cardiac transgene expression: comparison of 2 approaches based on herpesviral thymidine kinase reporter gene. J Nucl Med. 2004;45:1917-23.
- 106.
Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol. 2017;94:A3-13. https://doi.org/10.1016/j.ejrad.2017.04.004.
- 107.
Farag A, Thompson RT, Thiessen JD, Butler J, Prato FS, Théberge J. Assessment of a novel 32-channel phased array for cardiovascular hybrid PET/MRI imaging: MRI performance. Eur J Hybrid Imaging. 2019. https://doi.org/10.1186/s41824-019-0061-7.
- 108.
Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MRbased attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging. 2015;42:1574-80. https://doi.org/10.1007/s00259-015-3089-3.
- 109.
Lau JMC, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol. 2017;24:839-46. https://doi.org/10.1007/s12350-015-0197-1.
- 110.
Lewis CE, Prato FS, Drost DJ, Nicholson RL. Comparison of respiratory triggering and gating techniques for the removal of respiratory artifacts in MR imaging. Radiology. 1986;160:803-10. https://doi.org/10.1148/radiology.160.3.3737921.
- 111.
Pang J, Bhat H, Sharif B, Fan Z, Thomson LEJ, Labounty T, et al. Whole-heart coronary MRA with 100% respiratory gating efficiency: Self-navigated threedimensional retrospective image-based motion correction (TRIM). Magn Reson Med. 2014;71:67-74. https://doi.org/10.1002/mrm.24628.
- 112.
Kolbitsch C, Ahlman MA, Davies-Venn C, Evers R, Hansen M, Peressutti D, et al. Cardiac and respiratory motion correction for simultaneous cardiac PET/MR. J Nucl Med. 2017;58:846-52. https://doi.org/10.2967/jnumed.115.171728.
- 113.
Munoz C, Neji R, Kunze KP, Nekolla SG, Botnar RM, Prieto C. Respiratory- and cardiac motion-corrected simultaneous whole-heart PET and dual phase coronary MR angiography. Magn Reson Med. 2019;81:1671-84. https://doi.org/10.1002/mrm.27517.
- 114.
Feng T, Wang J, Tsui BMW. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation. Med Phys. 2018;45:1481-90. https://doi.org/10.1002/mp.12793.
- 115.
Robson PM, Trivieri MG, Karakatsanis NA, Padilla M, Abgral R, Dweck MR, et al. Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling. Phys Med Biol. 2018;63:225011. https://doi.org/10.1088/1361-6560/aaea97.
- 116.
Petibon Y, Sun T, Han PK, Ma C, El Fakhri G, Ouyang J. MR-based cardiac and respiratory motion correction of PET: Application to static and dynamic cardiac 18FFDG imaging. Phys Med Biol. 2019;64:195009. https://doi.org/10.1088/1361-6560/ab39c2.
- 117.
Klyuzhin IS, Sossi V. PET image reconstruction and deformable motion correction using unorganized point clouds. IEEE Trans Med Imaging. 2017;36:1263-75. https://doi.org/10.1109/TMI.2017.2675989.
- 118.
Berg E, Gill H, Marik J, Ogasawara A, Williams SP, van Dongen GAMS, et al. Totalbody PET and highly stable chelators together enable meaningful 89 Zr-antibody-PET studies up to 30 days post-injection. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.119.230961.
- 119.
Barton GP, Vildberg L, Goss K, Aggarwal N, Eldridge M, McMillan AB. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI. J Nucl Cardiol. 2018. https://doi.org/10.1007/s12350-018-1287-7.
- 120.
Wilk B, Wisenberg G, Sykes J, Butler J, Kovacs MS, Thompson RT, et al. Quantifying inflammation in infarcted myocardial tissue with severely reduced flow: A hybrid PET/MRI approach using a prolonged constant infusion of 18F-FDG and Gd-DTPA. In: Society of Nuclear Medicine and Molecular Imaging 2018 annual meet; 2018
- 121.
Kunze KP, Nekolla SG, Rischpler C, Zhang SHL, Hayes C, Langwieser N, et al. Myocardial perfusion quantification using simultaneously acquired 13NH3- ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress. Magn Reson Med. 2018. https://doi.org/10.1002/mrm.27213.
- 122.
Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, et al. Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med. 2014;72:707-17. https://doi.org/10.1002/mrm.24980.
- 123.
Piekarski E, Chitiboi T, Ramb R, Feng L, Axel L. Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction). J Cardiovasc Magn Reson. 2016;18:83. https://doi.org/10.1186/s12968-016-0306-6.
- 124.
Piekarski E, Chitiboi T, Ramb R, Latson LA, Bhatla P, Feng L, et al. Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration. Magn Reson Mater Phys Biol Med. 2018;31:49-59. https://doi.org/10.1007/s10334-017-0655-7.
- 125.
Piccini D, Feng L, Bonanno G, Coppo S, Yerly J, Lim RP, et al. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med. 2017;77:1473-84. https://doi.org/10.1002/mrm.26221.
- 126.
Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI. Prog Cardiovasc Dis. 2015;57:615-22. https://doi.org/10.1016/j.pcad.2015.02.003.
- 127.
Yang H-J, Christodoulou AG, Sykes J, Bi X, Cokic I, Prato FS, et al. Beat-by-beat dynamic assessment of myocardial oxygenation with highly time-resolved free breathing, ungated cardiac T2 BOLD MRI using a low-rank tensor formulation. In: International Society of Magnetic Resonance in Medicine 2018 annual meet; 2018
- 128.
Davidson CQ, Phenix CP, Tai T, Khaper N, Lees SJ. Searching for novel PET radiotracers: Imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8:200-27.
- 129.
Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7:91-101. https://doi.org/10.1002/jmri.1880070113.
- 130.
Richard MA, Fouquet JP, Lebel R, Lepage M. MRI-guided derivation of the input function for PET kinetic modeling. PET Clin. 2016;11:193-202. https://doi.org/10.1016/j.cpet.2015.09.003.
- 131.
Qi Q, Fox MS, Bartha R, Hoffman L, Lee TY, Thiessen JD. Comparison of glucose-CEST with perfusion and glycolysis measurements in a C6 rat model of glioma. In: World molecular imaging congress 2018; 2018
- 132.
Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging. J Am Coll Cardiol. 2019;73:1317-35. https://doi.org/10.1016/j.jacc.2018.12.054.
- 133.
Tan LK, McLaughlin RA, Lim E, Abdul Aziz YF, Liew YM. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J Magn Reson Imaging. 2018;48:140-52. https://doi.org/10.1002/jmri.25932.
- 134.
Couzin-Frankel J. When mice mislead. Science. 2013;342:922-3. https://doi.org/10.1126/science.342.6161.922.
- 135.
Gore JC, Yankeelov TE, Peterson TE, Avison MJ. Molecular imaging without radiopharmaceuticals? J Nucl Med. 2009;50:999-1007. https://doi.org/10.2967/jnumed.108.059576.
- 136.
Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50:R45-61. https://doi.org/10.1088/0031-9155/50/22/R01.
- 137.
Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instruments Methods Phys Res Sect A. 2011;648:S236-40. https://doi.org/10.1016/j.nima.2010.11.092.
- 138.
Grimm D. From bark to bedside. Science. 2016;353:638-40. https://doi.org/10.1126/science.353.6300.638.
- 139.
Thompson K, Wisenberg G, Sykes J, Terry Thompson R. MRI/MRS evaluation of cariporide in a canine long-term model of reperfused ischemic insults. J Magn Reson Imaging. 2003;17:136-41. https://doi.org/10.1002/jmri.10222.
- 140.
Diesbourg LD, Prato FS, Wisenberg G, Drost DJ, Marshall TP, Carroll SE, et al. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: Kinetic modeling in canine ischemic disease. Magn Reson Med. 1992;23:239-53. https://doi.org/10.1002/mrm.1910230205.
- 141.
Thornhill RE, Prato FS, Wisenberg G. The assessment of myocardial viability: A review of current diagnostic imaging approaches. J Cardiovasc Magn Reson. 2002;4:381-410. https://doi.org/10.1081/jcmr-120013301.
- 142.
Weinsaft JW, Klem I, Judd RM. MRI for the assessment of myocardial viability. Magn Reson Imaging Clin N Am. 2007;25:35-6. https://doi.org/10.1016/j.mric.2007.08.007.
- 143.
Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann HJ, Higgins CB. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation. 2001;103:871-6. https://doi.org/10.1161/01.CIR.103.6.871.
- 144.
Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH, et al. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Circ Physiol. 2003;285:H483-92. https://doi.org/10.1152/ajpheart.01016.2002.
- 145.
Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102:240-8. https://doi.org/10.1093/cvr/cvu025.
- 146.
Lee WW, Marinelli B, Van Der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153-63. https://doi.org/10.1016/j.jacc.2011.08.066.
- 147.
Hamirani YS, Wong A, Kramer CM, Salerno M. Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: A systematic review and meta-analysis. JACC Cardiovasc Imaging. 2014;7:940-52. https://doi.org/10.1016/j.jcmg.2014.06.012.
- 148.
Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: A critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 1987;21:737-46. https://doi.org/10.1093/cvr/21.10.737.
- 149.
Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: Validation of method. Ann Neurol. 1979;6:371-88. https://doi.org/10.1002/ana.410060502.
- 150.
Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11:94-107. https://doi.org/10.1016/j.jcmg.2017.02.021.
- 151.
Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medecine. Philadelphia: Elsevier Science; 2003.
- 152.
Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science. 2014. https://doi.org/10.1126/science.1257998.
- 153.
Ephrat P, Albert GC, Roumeliotis MB, Belton M, Prato FS, Carson JJL. Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging. Med Phys. 2010;37:1619-28. https://doi.org/10.1118/1.3352785.
- 154.
James ML, Gambhir SS. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol Rev. 2012;92:897-965. https://doi.org/10.1152/physrev.00049.2010.
Disclosures
All authors have no potential conflicts of interest.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.
The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.
Funding
Wilk, B. is supported by an Ontario Graduate scholarship and a Lawson Internal Research Fund. This work was supported in part by Ontario Research Fund RS7-021 and Canadian Foundation for Innovation No. 11358.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Wilk, B., Wisenberg, G., Dharmakumar, R. et al. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J. Nucl. Cardiol. 27, 2083–2099 (2020). https://doi.org/10.1007/s12350-019-01973-9
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Myocardial biology
- inflammation
- myocardial ischemia and infarction
- MRI
- PET
- hybrid imaging