Barth Syndrome Foundation. About Barth syndrome-frequently asked questions. Barth Syndrome Foundation; 2019. https://www.barthsyndrome.org/file_download/inline/8bd9d37d-6449-4687-99b3-7d78202475be. Accessed 24 July 2019.
Clarke SL, Bowron A, Gonzalez IL, et al. Barth syndrome. Orphanet J Rare Dis 2013;8:23.
PubMed
PubMed Central
Article
Google Scholar
Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983;62:327-55.
CAS
PubMed
Article
Google Scholar
Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996;12:385-9.
CAS
PubMed
Article
Google Scholar
Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 2014;20:616-23.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xu Y, Phoon CK, Berno B, et al. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 2016;12:641-7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 2002;277:43553-6.
CAS
PubMed
Article
Google Scholar
Spencer CT, Bryant RM, Day J, et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006;118:e337-46.
PubMed
Article
Google Scholar
Kang SL, Forsey J, Dudley D, Steward CG, Tsai-Goodman B. Clinical characteristics and outcomes of cardiomyopathy in Barth syndrome: The UK experience. Pediatr Cardiol 2016;37:167-76.
PubMed
Article
Google Scholar
Bashir A, Bohnert KL, Reeds DN, et al. Impaired cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with Barth syndrome. Physiol Rep 2017. https://doi.org/10.14814/phy2.13130.
Article
PubMed
PubMed Central
Google Scholar
Spencer CT, Byrne BJ, Bryant RM, et al. Impaired cardiac reserve and severely diminished skeletal muscle O(2) utilization mediate exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol 2011;301:H2122-9.
CAS
PubMed
Article
Google Scholar
Cade WT, Bohnert KL, Peterson LR, et al. Blunted fat oxidation upon submaximal exercise is partially compensated by enhanced glucose metabolism in children, adolescents and young adults with Barth syndrome. J Inherit Metab Dis 2019;42:480-93.
CAS
PubMed
PubMed Central
Google Scholar
Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271-7.
CAS
PubMed
Article
Google Scholar
Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: Evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail 2006;12:644-52.
CAS
PubMed
Article
Google Scholar
Peterson MB, Mead RJ, Welty JD. Free amino acids in congestive heart failure. J Mol Cell Cardiol 1973;5:139-47.
CAS
PubMed
Article
Google Scholar
Lai L, Leone TC, Keller MP, et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: A multisystems approach. Circ Heart Fail 2014;7:1022-31.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sansbury BE, DeMartino AM, Xie Z, et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 2014;7:634-42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cade WT, Spencer CT, Reeds DN, et al. Substrate metabolism during basal and hyperinsulinemic conditions in adolescents and young-adults with Barth syndrome. J Inherit Metab Dis 2013;36:91-101.
CAS
PubMed
Article
Google Scholar
Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.
PubMed
Article
Google Scholar
Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 1992;281:21-40.
CAS
PubMed
PubMed Central
Article
Google Scholar
Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA 2001;12:141-52.
CAS
PubMed
Article
Google Scholar
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35-43.
CAS
PubMed
Article
Google Scholar
El-Sharkawy AM, Schar M, Ouwerkerk R, Weiss RG, Bottomley PA. Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses. Magn Reson Med 2009;61:785-95.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: A (31)P time-dependent saturation transfer spectroscopy study. NMR Biomed 2014;27:663-71.
CAS
PubMed
PubMed Central
Article
Google Scholar
Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 2001;89:1199-208.
CAS
PubMed
Article
Google Scholar
Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639-52.
CAS
PubMed
Article
Google Scholar
Herrero P, Weinheimer CJ, Dence C, Oellerich WF, Gropler RJ. Quantification of myocardial glucose utilization by PET and 1-carbon-11-glucose. J Nucl Cardiol 2002;9:5-14.
PubMed
Article
Google Scholar
Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med 1996;37:1723-30.
CAS
PubMed
Google Scholar
Tuunanen H, Engblom E, Naum A, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 2006;114:2130-7.
CAS
PubMed
Article
Google Scholar
Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 2012;111:728-38.
CAS
PubMed
PubMed Central
Article
Google Scholar
He L, Kim T, Long Q, et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012;126:1705-16.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation—A novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011;1813:1333-50.
CAS
PubMed
Article
Google Scholar
Fiolet JW, Baartscheer A. Cellular calcium homeostasis during ischemia; a thermodynamic approach. Cardiovasc Res 2000;45:100-6.
CAS
PubMed
Article
Google Scholar
Suzuki-Hatano S, Saha M, Soustek MS, et al. AAV9-TAZ gene replacement ameliorates cardiac TMT proteomic profiles in a mouse model of Barth syndrome. Mol Ther Methods Clin Dev 2019;13:167-79.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schweitzer GG, Finck BN, Cade WT. Increased anaerobic metabolism during exercise in Barth syndrome may result from augmented liver glycogenolysis. In: International scientific, medical, and family conference. Clearwater Beach, FL: Barth Syndrome Foundation; 2018 (Abstract).
Kelly DP, Mendelsohn NJ, Sobel BE, Bergmann SR. Detection and assessment by positron emission tomography of a genetically determined defect in myocardial fatty acid utilization (long-chain acyl-CoA dehydrogenase deficiency). Am J Cardiol 1993;71:738-44.
CAS
PubMed
Article
Google Scholar
Bergmann SR, Herrero P, Sciacca R, et al. Characterization of altered myocardial fatty acid metabolism in patients with inherited cardiomyopathy. J Inherit Metab Dis 2001;24:657-74.
CAS
PubMed
Article
Google Scholar
Murray AJ, Cole MA, Lygate CA, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 2008;44:694-700.
CAS
PubMed
Article
Google Scholar
Sluse FE. Uncoupling proteins: Molecular, functional, regulatory, physiological and pathological aspects. Adv Exp Med Biol 2012;942:137-56.
CAS
PubMed
Article
Google Scholar
Knottnerus SJG, Bleeker JC, Wust RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018;19:93-106.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cleroux J, Van Nguyen P, Taylor AW, Leenen FH. Effects of beta 1- vs. beta 1 + beta 2-blockade on exercise endurance and muscle metabolism in humans. J Appl Physiol (1985) 1989;66:548-54.
CAS
Article
Google Scholar
Fonseca VA. Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin 2010;26:615-29.
CAS
PubMed
Article
Google Scholar
Ichihara K, Neely JR, Siehl DL, Morgan HE. Utilization of leucine by working rat heart. Am J Physiol 1980;239:E430-6.
CAS
PubMed
Google Scholar
Vernon HJ, Sandlers Y, McClellan R, Kelley RI. Clinical laboratory studies in Barth syndrome. Mol Genet Metab 2014;112:143-7.
CAS
PubMed
Article
Google Scholar