Skip to main content

Advertisement

Log in

Quantitative Clinical Nuclear Cardiology, Part 1: Established Applications

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has attained widespread clinical acceptance as a standard of care for patients with known or suspected coronary artery disease (CAD). A significant contribution to this success has been the use of computer techniques to provide objective quantitative assessment in the standardization of the interpretation of these studies. Software platforms have been developed as a pipeline to provide the quantitative algorithms researched, developed and validated to be clinically useful so diagnosticians everywhere can benefit from these tools. The goal of this CME article (PART 1) is to describe the many quantitative tools that are clinically established and more importantly how clinicians should use them routinely in the interpretation, clinical management and therapy guidance of patients with CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC:

attenuation correction

BMI:

body mass index

CAD:

coronary artery disease

EDV:

end diastolic volume

ESV:

end systolic volume

FDG:

F18-Fluorodeoxyglucose

LV:

left ventricle

LVEF:

left ventricular ejection fraction

MI:

myocardial infarction

MPI:

myocardial perfusion imaging

SDS:

summed difference score

SRS:

summed rest score

SSS:

summed stress score

TID:

transient ischemic dilation

TSI:

transient subendocardial ischemia (also referred as TID)

TPD:

total perfusion deficit

References

  1. Iskandrian AE, Garcia EV, editors. Nuclear Cardiac Imaging. 5th ed. New York, NY: Oxford University Press; 2016.

    Google Scholar 

  2. Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol. 2018;25:1784–846.

    PubMed  Google Scholar 

  3. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–226.

    PubMed  Google Scholar 

  4. Garcia EV, Van Train K, Maddahi J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med. 1985;26:17–26.

    CAS  PubMed  Google Scholar 

  5. Van Train KF, Areeda J, Garcia EV, et al. Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med. 1993;34:1494–502.

    PubMed  Google Scholar 

  6. Nakajima K, Matsumoto N, Kasai T, Matsuo S, Kiso K, Okuda K. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Ann Nucl Med. 2016;30:188–99.

    PubMed  PubMed Central  Google Scholar 

  7. Gambhir SS, Berman DS, Ziffer J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635–43.

    PubMed  Google Scholar 

  8. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.

    PubMed  PubMed Central  Google Scholar 

  9. Bai C, Conwell R, Kindem J, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17:459–69.

    PubMed  PubMed Central  Google Scholar 

  10. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.

    PubMed  PubMed Central  Google Scholar 

  11. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897–903.

    PubMed  Google Scholar 

  12. Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: initial experience with a CZT SPECT camera. J Nucl Cardiol. 2010;17:1009–14.

    PubMed  Google Scholar 

  13. Lecchi M, Martinelli I, Zoccarato O, Maioli C, Lucignani G, Del Sole A. Comparative analysis of full-time, half-time, and quarter-time myocardial ECG-gated SPECT quantification in normal-weight and overweight patients. J Nucl Cardiol. 2017;24:876–87.

    CAS  PubMed  Google Scholar 

  14. Lyon MC, Foster C, Ding X, et al. Dose reduction in half-time myocardial perfusion SPECT-CT with multifocal collimation. J Nucl Cardiol. 2016;23:657–67.

    PubMed  Google Scholar 

  15. Nakazato R, Berman DS, Hayes SW, et al. Myocardial perfusion imaging with a solid-state camera: simulation of a very low dose imaging protocol. J Nucl Med. 2013;54:373–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharir T, Pinskiy M, Pardes A, et al. Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: automated quantification of one-day, stress-first SPECT using a CZT camera. J Nucl Cardiol. 2016;23:11–20.

    PubMed  Google Scholar 

  17. Wetzl M, Sanders JC, Kuwert T, Ritt P. Effect of reduced photon count levels and choice of normal data on semi-automated image assessment in cardiac SPECT. J Nucl Cardiol. April 13, 2018

  18. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    PubMed  Google Scholar 

  19. Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1995;26:639–47.

    CAS  PubMed  Google Scholar 

  20. Slomka PJ, Nishina H, Berman DS, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12:66–77.

    PubMed  Google Scholar 

  21. Klein JL, Garcia EV, DePuey EG, et al. Reversibility bullseye: a new polar bull’s-eye map to quantify reversibility of stress induced SPECT Tl-201 myocardial perfusion defects. J Nucl Med. 1990;31:1240–6.

    CAS  PubMed  Google Scholar 

  22. Garcia EV, DePuey EG, Sonnemaker RE, et al. Quantification of the reversibility of stress induced SPECT thallium-201 myocardial perfusion defects: a multicenter trial using bull’s-eye polar maps and standard normal limits. J Nucl Med. 1990;31:1761–5.

    CAS  PubMed  Google Scholar 

  23. Jain D, He ZH, Lele V, Aronow WS. Direct myocardial ischemia imaging: a new cardiovascular nuclear imaging paradigm. Clin Cardiol. 2015;38:124–30.

    PubMed  Google Scholar 

  24. Berman DS, Kang X, Van Train KF, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1998;32:1987–95.

    CAS  PubMed  Google Scholar 

  25. Hachamovitch R, Rozanski A, Shaw LJ, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32:1012–1024

    PubMed  Google Scholar 

  26. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman D. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Google Scholar 

  27. Tamaki S, Nakajima H, Murakami T, et al. Estimation of infarct size by myocardial emission computed tomography with thallium-201 and its relation to creatine kinase-MB release after myocardial infarction in man. Circulation. 1982;66:994–1001.

    CAS  PubMed  Google Scholar 

  28. Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic 99mTc-hexalis-2-methoxy2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation. 1989;80:1277–86.

    CAS  PubMed  Google Scholar 

  29. Christian TF. The use of perfusion imaging in acute myocardial infarction: applications for clinical trials and clinical care. J Nucl Cardiol. 1995;2:423–36.

    CAS  PubMed  Google Scholar 

  30. Slomka PJ, Fieno D, Thomson L, et al. Automatic detection and size quantification of infarcts by myocardial perfusion SPECT: clinical validation by delayed-enhancement MRI. J Nucl Med. 2005;46:728–35.

    PubMed  Google Scholar 

  31. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease: comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose. Circulation. 1994;89:578–87.

    CAS  PubMed  Google Scholar 

  32. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.

    CAS  PubMed  Google Scholar 

  33. Schelbert HR, Beanlands R, Bengel F, et al. PET myocardial perfusion and glucose metabolism imaging: part 2—guidelines for interpretation and reporting. J Nucl Cardiol. 2003;10:557–71.

    PubMed  Google Scholar 

  34. Santana CA, Faber TL, Soler-Peter M, et al. Prognostic performance of quantitative PET tools for stratification of patients with ischemic cardiomyopathy undergoing myocardial viability assessment. Nucl Med Commun. 2008;29:970–81.

    PubMed  Google Scholar 

  35. Allman KC. Noninvasive assessment myocardial viability: current status and future directions. J Nucl Cardiol. 2013;20:618–37.

    PubMed  Google Scholar 

  36. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol. 2007;14:455–65.

    PubMed  Google Scholar 

  37. Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007;14:420–32.

    PubMed  Google Scholar 

  38. Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol. 2007;14:433–54.

    PubMed  Google Scholar 

  39. Slomka PJ, Germano G, Berman DS. Gated SPECT MPI processing and quantitation. In: Iskandrian AE, Garcia EV, editors. Nuclear Cardiac Imaging. 5th ed. New York, NY: Oxford University Press; 2016. p. 109–36.

    Google Scholar 

  40. Stegger L, Lipke CSA, Kies P, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: validation of an elastic surface model approach in comparison to cardiac magnetic resonance imaging, 4D-MSPECT and QGS. Eur J Nucl Med Mol Imaging. 2007;34:900–9.

    PubMed  Google Scholar 

  41. Soneson H, Hedeer F, Arévalo C, et al. Development and validation of a new automatic algorithm for quantification of left ventricular volumes and function in gated myocardial perfusion SPECT using cardiac magnetic resonance as reference standard. J Nucl Cardiol. 2011;18:874–85.

    PubMed  Google Scholar 

  42. Schaefer WM, Lipke CSA, Standke D, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med. 2005;46:1256–63.

    PubMed  Google Scholar 

  43. Schaefer WM, Lipke CS, Nowak B, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: comparison with cardiac MRI. J Nucl Med. 2004;45:74–9.

    PubMed  Google Scholar 

  44. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI. Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med. 1994;35:1185–92.

    CAS  PubMed  Google Scholar 

  45. Sharir T, Kang X, Germano G, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol. 2006;13:495–506.

    PubMed  Google Scholar 

  46. Akincioglu C, Berman DS, Nishina H, et al. Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med. 2005;46:1102–8.

    PubMed  Google Scholar 

  47. Nakajima K, Taki J, Kawano M, et al. Diastolic dysfunction in patients with systemic sclerosis detected by gated myocardial perfusion SPECT: an early sign of cardiac involvement. J Nucl Med. 2001;42:183–8.

    CAS  PubMed  Google Scholar 

  48. Kuroiwa Y, Nagamachi S, Miyati T, et al. The agreement of left ventricular function parameters between 99mTc-tetrofosmin gated myocardial SPECT and gated myocardial MRI. Ann Nucl Med. 2012;26:147–63.

    PubMed  Google Scholar 

  49. Yamamoto A, Takahashi N, Abe K, Kobayashi Y, Tamai J, Munakata K. Regional left-ventricular diastolic wall motion assessed by a new program for ECG-gated myocardial perfusion SPECT in early-stage heart failure. J Nucl Cardiol. 2008;15:375–82.

    PubMed  Google Scholar 

  50. Gimelli A, Liga R, Magro S, et al. Evaluation of left ventricular mass on cadmium-zinc-telluride imaging: validation against cardiac magnetic resonance. J Nucl Cardiol. 2019;26:899–905.

    PubMed  Google Scholar 

  51. Abidov A, Slomka PJ, Nishina H, et al. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: initial description of a new variable. J Nucl Cardiol. 2006;13:652–9.

    PubMed  Google Scholar 

  52. Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol. 1996;27:1612–20.

    CAS  PubMed  Google Scholar 

  53. Faber TL, Cooke CD, Folks RD, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med. 1999;40:650–9.

    CAS  PubMed  Google Scholar 

  54. Okwuosa TM, Hampole CV, Ali J, Williams KA. Left ventricular mass from gated SPECT myocardial perfusion imaging: comparison with cardiac computed tomography. J Nucl Cardiol. 2009;16:775–83.

    PubMed  Google Scholar 

  55. Xu Y, Arsanjani R, Clond M, et al. Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT. J Nucl Cardiol. 2012;19:465–73.

    PubMed  PubMed Central  Google Scholar 

  56. Abidov A, Bax JJ, Hayes SW, et al. Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol. 2003;42:1818–25.

    PubMed  Google Scholar 

  57. Abidov A, Germano G, Berman DS. Transient ischemic dilation ratio: a universal high-risk diagnostic marker in myocardial perfusion imaging. J Nucl Cardiol. 2007;14:497–500.

    PubMed  Google Scholar 

  58. Slomka PJ, Betancur J, Liang JX, et al. Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). J Nucl Cardiol. June 19, 2018

  59. Hu LH, Sharir T, Miller RJH, et al. Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: a report from REFINE SPECT registry. J Nucl Cardiol. May 13, 2019

  60. Shi H, Santana CA, Rivero A, et al. Normal values and prospective validation of transient ischemic dilation index in Rb-82 PET myocardial perfusion imaging. Nucl Med Commun. 2007;28:859–63.

    PubMed  Google Scholar 

  61. Esteves FP, Santana CA, Raggi P, Garcia EV. Myocardial perfusion SPECT/CT: The added value of CT imaging. In: Iskandrian AE, Garcia EV, editors. Atlas of Nuclear Cardiology: Companion to Braunwald’s Heart Disease. Philadelphia, PA: Saunders; 2012. p. 390–416.

    Google Scholar 

  62. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2:675–88.

    PubMed  Google Scholar 

  63. Galt JR, Garcia EV, Robbins W. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging. 1990;9:144–50.

    CAS  PubMed  Google Scholar 

  64. Slomka PJ, Berman DS, Xu Y, et al. Fully automated wall motion and thickening scoring system for myocardial perfusion SPECT: method development and validation in large population. J Nucl Cardiol. 2012;19:291–302. PubMed

    PubMed  PubMed Central  Google Scholar 

  65. Arsanjani R, Xu Y, Hayes SW, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54:221–8.

    PubMed  PubMed Central  Google Scholar 

  66. Nakazato R, Berman DS, Gransar H, et al. Prognostic value of quantitative high-speed myocardial perfusion imaging. J Nucl Cardiol. 2012;19:1113–23.

    PubMed  PubMed Central  Google Scholar 

  67. Santana CA, Folks RD, Garcia EV, et al. Quantitative Rb-82 PET/CT development and validation of myocardial perfusion database. J Nucl Med. 2007;48:1122–8.

    PubMed  Google Scholar 

  68. Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14:197–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu Y, Fish M, Gerlach J, et al. Combined quantitative analysis of attenuation corrected and non-corrected myocardial perfusion SPECT: method development and clinical validation. J Nucl Cardiol. 2010;17:591–9.

    PubMed  PubMed Central  Google Scholar 

  70. Germano G, Kavanagh PB, Ruddy TD, et al. “Same-patient processing” for multiple cardiac SPECT studies. 2. Improving quantification repeatability. J Nucl Cardiol. 2016;23:1442–1453

    PubMed  PubMed Central  Google Scholar 

  71. Xu Y, Kavanagh P, Fish M, et al. Automated quality control for segmentation of myocardial perfusion SPECT. J Nucl Med. 2009;50:1418–26.

    PubMed  PubMed Central  Google Scholar 

  72. Motwani M, Leslie WD, Goertzen AL, et al. Fully automated analysis of attenuation-corrected SPECT for the long-term prediction of acute myocardial infarction. J Nucl Cardiol. 2018;25:1353–60.

    PubMed  Google Scholar 

  73. Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected 99mTc-sestamibi single-photon emission computed tomography. Circulation. 1996;93:463–73.

    CAS  PubMed  Google Scholar 

  74. Garcia EV. Quantitative nuclear cardiology: we are almost there! J Nucl Cardiol. 2012;19:424–37.

    PubMed  Google Scholar 

  75. Slomka PJ, Fish MB, Lorenzo S, et al. Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2006;13:642–51.

    PubMed  Google Scholar 

  76. Grossman GB, Garcia EV, Bateman TM, et al. Quantitative Tc-99m sestamibi attenuation-corrected SPECT: development and multicenter trial validation of myocardial perfusion stress gender-independent normal database in an obese population. J Nucl Cardiol. 2004;11:263–72.

    PubMed  Google Scholar 

  77. Hayes SW, De Lorenzo A, Hachamovitch R, et al. Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT. J Nucl Med. 2003;44:1633–40.

    PubMed  Google Scholar 

  78. Nishina H, Slomka PJ, Abidov A, et al. Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med. 2006;47:51–8.

    PubMed  Google Scholar 

  79. Slomka PJ, Nishina H, Abidov A, et al. Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women. J Nucl Cardiol. 2007;14:44–52.

    PubMed  Google Scholar 

  80. Nakazato R, Tamarappoo BK, Kang X, et al. Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography. J Nucl Med. 2010;51:1724–31.

    PubMed  PubMed Central  Google Scholar 

  81. Leslie WD, Tully SA, Yogendran MS, Ward LM, Nour KA, Metge CJ. Prognostic value of automated quantification of Tc-99m-sestamibi myocardial perfusion imaging. J Nucl Med. 2005;46:204–11.

    PubMed  Google Scholar 

Download references

Disclosure

Dr. Moody is an employee of Invia. Dr. Slomka receives grants from the National Institutes of Health and Siemens Medical Systems and receives software royalties from Cedars-Sinai. Dr. Germano receives royalties from most nuclear medicine companies. Dr. Ficaro is an employee of Invia. Dr. Garcia receives grants from Syntermed and GE Healthcare and receives royalties from Syntermed. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest V. Garcia PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

This article is being jointly published in the Journal of Nuclear Medicine (https://doi.org/10.2967/jnumed.119.229799) and the Journal of Nuclear Cardiology (https://doi.org/10.1007/s12350-019-01906-6).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP3 3399 kb)

Supplementary material 2 (PPTX 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, E.V., Slomka, P., Moody, J.B. et al. Quantitative Clinical Nuclear Cardiology, Part 1: Established Applications. J. Nucl. Cardiol. 27, 189–201 (2020). https://doi.org/10.1007/s12350-019-01906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01906-6

Keywords

Navigation