Quantitative assessment of myocardial blood flow and extracellular volume fraction using 68Ga-DOTA-PET: A feasibility and validation study in large animals



Here we evaluated the feasibility of PET with Gallium-68 (68Ga)-labeled DOTA for non-invasive assessment of myocardial blood flow (MBF) and extracellular volume fraction (ECV) in a pig model of myocardial infarction. We also aimed to validate MBF measurements using microspheres as a gold standard in healthy pigs.


8 healthy pigs underwent three sequential 68Ga-DOTA-PET/CT scans at rest and during pharmacological stress with simultaneous injection of fluorescent microspheres to validate MBF measurements. Myocardial infarction was induced in 5 additional pigs, which underwent 68Ga-DOTA-PET/CT examinations 7-days after reperfusion. Dynamic PET images were reconstructed and fitted to obtain MBF and ECV parametric maps.


MBF assessed with 68Ga-DOTA-PET showed good correlation (y = 0.96x + 0.11, r = 0.91) with that measured with microspheres. MBF values obtained with 68Ga-DOTA-PET in the infarcted area (LAD, left anterior descendant) were significantly reduced in comparison to remote ones LCX (left circumflex artery, P < 0.0001) and RCA (right coronary artery, P < 0.0001). ECV increased in the infarcted area (P < 0.0001).


68Ga-DOTA-PET allowed non-invasive assessment of MBF and ECV in pigs with myocardial infarction and under rest-stress conditions. This technique could provide wide access to quantitative measurement of both MBF and ECV with PET imaging.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7



Coronary artery disease




Cardiac magnetic resonance


Computed tomography


1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid


Extracellular volume fraction


Myocardial blood flow




Positron emission tomography


  1. 1.

    Benjamin EJ, Blaha MJ, Chiuve SE, et al (2017) Heart disease and stroke statistics’ 2017 Update: A Report from the American Heart Association.

  2. 2.

    Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC: Cardiovasc Imaging. 2010;3:623–40.

    Google Scholar 

  3. 3.

    Dilsizian V, Bacharach SL, Beanlands RS, et al. PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16:651.

    Article  Google Scholar 

  4. 4.

    Heller GV, Calnon D, Dorbala S. Recent advances in cardiac PET and PET/CT myocardial perfusion imaging. J Nucl Cardiol. 2009;16:962–9.

    Article  PubMed  Google Scholar 

  5. 5.

    Packard RRS, Huang S-C, Dahlbom M, et al. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med. 2014;55:1438–45.

    Article  PubMed Central  PubMed  Google Scholar 

  6. 6.

    Breeman WAP, Verbruggen AM. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging. 2007;34:978–81.

    Article  PubMed Central  PubMed  Google Scholar 

  7. 7.

    Shetty D, Lee YS, Jeong JM. 68Ga-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging. 2010;44:233–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. 8.

    Tarkia M, Saraste A, Saanijoki T, et al. Evaluation of 68Ga-labeled tracers for PET imaging of myocardial perfusion in pigs. Nucl Med Biol. 2012;39:715–23.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Ley S, Ley-Zaporozhan J. Pulmonary perfusion imaging using MRI: Clinical application. Insights Imaging. 2012;3:61–71.

    Article  PubMed  Google Scholar 

  10. 10.

    Velasco C, Mateo J, Santos A, et al. Assessment of regional pulmonary blood flow using 68Ga-DOTA PET. EJNMMI Res. 2017;7:7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. 11.

    Autio A, Saraste A, Kudomi N, et al. Assessment of blood flow with (68)Ga-DOTA PET in experimental inflammation: A validation study using (15)O-water. Am J Nucl Med Mol Imaging. 2014;4:571–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. 12.

    Medical Advisory Secretariat. Positron emission tomography for the assessment of myocardial viability: An evidence-based analysis. Ont Health Technol Assess Ser. 2005;5:1–167.

    PubMed Central  Google Scholar 

  13. 13.

    Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. 14.

    Kim H, Lee SJ, Davies-Venn C, et al. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: Pharmacokinetic study in a rat model of chronic MI. Nucl Med Commun. 2016;37:188–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15.

    Glenny RW, Bernard S, Brinkley M. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol. 1993;74:2585–97.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Fernández-Jiménez R, García-Prieto J, Sánchez-González J, et al. Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. J Am Coll Cardiol. 2015;66:816–28.

    Article  PubMed  Google Scholar 

  17. 17.

    Hein TW, Belardinelli L, Kuo L. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: Role of nitric oxide and ATP-sensitive potassium channels. J Pharmacol Exp Ther. 1999;291:655–64.

    CAS  PubMed  Google Scholar 

  18. 18.

    Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents. Incl Gadolinium Depos. 2009;1267:1259–67.

    Google Scholar 

  19. 19.

    Sourbron SP, Buckley DL. On the scope and interpretation of the tofts models for DCE-MRI. Magnetic Resonance in Medicine. 2011;745:735–45.

    Article  Google Scholar 

  20. 20.

    Nordström J, Kero T, Harms HJ, et al. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET. EJNMMI Phys. 2017;4:26.

    Article  PubMed Central  PubMed  Google Scholar 

  21. 21.

    van der Weerdt AP, Klein LJ, Boellaard R, et al. Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. J Nucl Med. 2001;42:1622–9.

    PubMed  Google Scholar 

  22. 22.

    Nesterov SV, Han C, Mäki M, et al. Myocardial perfusion quantitation with15O-labelled water PET: High reproducibility of the new cardiac analysis software (CarimasTM). Eur J Nucl Med Mol Imaging. 2009;36:1594–602.

    Article  Google Scholar 

  23. 23.

    Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circ J Am Hear Assoc. 2002;105:539–42.

    Google Scholar 

  24. 24.

    Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959;197:1205–10.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Crone C. The permeability of capillaries in various organs as determined by use of the “Indicator Diffusion” method. Acta Physiol Scand. 1963;58:292–305.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Fernández-Jiménez R, Galán-Arriola C, Sánchez-González J, et al. Effect of ischemia duration and protective interventions on the temporal dynamics of tissue composition after myocardial infarction. Circ Res. 2017;121:439–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. 27.

    Serrat MA. Measuring bone blood supply in mice using fluorescent microspheres. Nat Protoc. 2009;4:1749–58.

    Article  CAS  Google Scholar 

  28. 28.

    Fan FC, Schuessler GB, Chen RY, Chien S. Determinations of blood flow and shunting of 9- and 15-micrometer spheres in regional beds. Am J Physiol: Hear Circ Physiol. 1979;237:H25–33.

    CAS  Google Scholar 

  29. 29.

    Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.

    Article  Google Scholar 

  30. 30.

    McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods. 1996;1:30–46.

    Article  Google Scholar 

  31. 31.

    Harms HJ, Nesterov SV, Han C, et al. Comparison of clinical non-commercial tools for automated quantification of myocardial blood flow using oxygen-15-labelled water PET/CT. Eur Heart J Cardiovasc Imaging. 2014;15:431–41.

    Article  PubMed  Google Scholar 

  32. 32.

    White SK, Sado DM, Flett AS, Moon JC. Characterising the myocardial interstitial space: The clinical relevance of non-invasive imaging. Heart. 2012;98:773–9.

    Article  PubMed  Google Scholar 

  33. 33.

    Maddahi J, Packard RRS. Cardiac PET perfusion tracers: Current status and future directions. Semin Nucl Med. 2014;44:333–43.

    Article  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: A meta-anal. J Am Coll Cardiol. 2012;59:1719–28.

    Article  PubMed  Google Scholar 

  35. 35.

    Sampson UK, Dorbala S, Limaye A, et al. Diagnostic accuracy of Rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol. 2007;49:1052–8.

    Article  CAS  PubMed  Google Scholar 

Download references


The authors would like to thank Dr. Stuart Pocock (London School of Hygiene and Tropical Medicine, UK) for his help and advice regarding statistical analysis.


All authors have reported that they have no relationships relevant to the contents of this paper to disclose. This work was supported by grants from the Ministerio de Economía, Industria y Competitividad (MEIC) (SAF2014-58920-R), from the Carlos III Institute of Health of Spain and Fondo Europeo de Desarrollo Regional (FEDER, “Una manera de hacer Europa”) (FIS-FEDER PI14-01427), and from the Comunidad de Madrid (2016-T1/TIC-1099). C. Velasco holds a fellowship from the Spanish Ministry of Education (FPU014/01794). The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (MDM-2017-0720).

Author information



Corresponding author

Correspondence to Jesús Mateo PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Supplementary material 2 (PPTX 3387 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velasco, C., Mota-Cobián, A., Mota, R.A. et al. Quantitative assessment of myocardial blood flow and extracellular volume fraction using 68Ga-DOTA-PET: A feasibility and validation study in large animals. J. Nucl. Cardiol. (2019). https://doi.org/10.1007/s12350-019-01694-z

Download citation


  • PET
  • myocardial blood flow
  • perfusion agents
  • tracers
  • molecular imaging agents
  • molecular imaging