Skip to main content

Advertisement

Log in

The role of cardiac imaging in the management of non-ischemic cardiovascular diseases in human immunodeficiency virus infection

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Infection with human immunodeficiency virus (HIV) has become the pandemic of the new century. About 36.9 million people are living with HIV worldwide. The introduction of antiretroviral therapy in 1996 has dramatically changed the global landscape of HIV care, resulting in significantly improved survival and changing HIV to a chronic disease. With near-normal life expectancy, contemporary cardiac care faces multiple challenges of cardiovascular diseases, disorders specific to HIV/AIDS, and those related to aging and higher prevalence of traditional risk factors. Non-ischemic cardiovascular diseases are major components of cardiovascular morbidity and mortality in HIV/AIDS. Non-invasive cardiac imaging plays a pivotal role in the management of these diseases. This review summarizes the non-ischemic presentation of the HIV cardiovascular spectrum focusing on the role of cardiac imaging in the management of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ART:

Antiretroviral therapy

CMP:

Cardiomyopathy

18FDG:

18-fluorodeoxyglucose

GBPS:

Gating with blood pool SPECT (GBPS)

HIV:

Human immunodeficiency virus

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction (HFrEF)

123I-MIBG:

123I-metaiodobenzylguanidine

TTPF:

Time to the peak filling

References

  1. UNAIDS (2018) Global HIV & AIDS statistics—2018 fact sheet.

  2. Selik RM, Mokotoff ED, Branson B, Owen SM, Whitmore S, Hall HI. Revised surveillance case definition for HIV infection-United States, 2014. MMWR Recomm Rep 2014;63:1-10.

    Google Scholar 

  3. Poorolajal J, Hooshmand E, Mahjub H, Esmailnasab N, Jenabi E. Survival rate of AIDS disease and mortality in HIV-infected patients: A meta-analysis. Public Health 2016;139:3-12.

    CAS  PubMed  Google Scholar 

  4. Samji H, Cescon A, Hogg RS, Modur SP, Althoff KN, Buchacz K, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE 2013;8:e81355.

    PubMed  PubMed Central  Google Scholar 

  5. Smith CJ, Ryom L, Weber R, Morlat P, Pradier C, Reiss P, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): A multicohort collaboration. Lancet (London, England) 2014;384:241-8.

    Google Scholar 

  6. Sliwa K, Carrington MJ, Becker A, Thienemann F, Ntsekhe M, Stewart S. Contribution of the human immunodeficiency virus/acquired immunodeficiency syndrome epidemic to de novo presentations of heart disease in the Heart of Soweto Study cohort. Eur Heart J 2012;33:866-74.

    PubMed  Google Scholar 

  7. Blaylock JM, Byers DK, Gibbs BT, Nayak G, Ferguson M, Tribble DR, et al. Longitudinal assessment of cardiac diastolic function in HIV-infected patients. Int J STD AIDS 2012;23:105-10.

    CAS  PubMed  Google Scholar 

  8. Barbaro G. Heart and HAART: Two sides of the coin for HIV-associated cardiology issues. World J Cardiol 2010;2:53-7.

    PubMed  PubMed Central  Google Scholar 

  9. Ntusi NAB, Ntsekhe M. Human immunodeficiency virus-associated heart failure in sub-Saharan Africa: Evolution in the epidemiology, pathophysiology, and clinical manifestations in the antiretroviral era. ESC Heart Fail 2016;3:158-67.

    PubMed  PubMed Central  Google Scholar 

  10. Erqou S, Lodebo BT, Masri A, Altibi AM, Echouffo-Tcheugui JB, Dzudie A, Ataklte F, Choudhary G, Bloomfield GS, Wu WC, Kengne AP. Cardiac dysfunction among people living with HIV A systematic review and meta-analysis. J Am Coll Cardiol HF 2019;7:98-108.

    Google Scholar 

  11. Womack JA, Chang CC, So-Armah KA, Alcorn C, Baker JV, Brown ST, et al. HIV infection and cardiovascular disease in women. J Am Heart Assoc 2014;3:e001035.

    PubMed  PubMed Central  Google Scholar 

  12. Crum NF, Riffenburgh RH, Wegner S, Agan BK, Tasker SA, Spooner KM, et al. Comparisons of causes of death and mortality rates among HIV-infected persons: Analysis of the pre-, early, and late HAART (highly active antiretroviral therapy) eras. J Acquir Immune Defic Syndr 1999;2006(41):194-200.

    Google Scholar 

  13. Belkin MN, Uriel N. Heart health in the age of highly active antiretroviral therapy: A review of HIV cardiomyopathy. Curr Opin Cardiol 2018;33:317-24.

    PubMed  Google Scholar 

  14. Lecoeur H, Borgne-Sanchez A, Chaloin O, El-Khoury R, Brabant M, Langonné A, et al. HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase. Cell Death Dis 2012;3:e282.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bloomfield GS, Alenezi F, Barasa FA, Lumsden R, Mayosi BM, Velazquez EJ. Human immunodeficiency virus and heart failure in low- and middle-income countries. JACC Heart Fail 2015;3:579-90.

    PubMed  PubMed Central  Google Scholar 

  16. Manga P, McCutcheon K, Tsabedze N, Vachiat A, Zachariah D. HIV and nonischemic heart disease. J Am Coll Cardiol 2017;69:83-91.

    PubMed  Google Scholar 

  17. Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian network on congestive heart failure. Am Heart J 2002;143:398-405.

    PubMed  Google Scholar 

  18. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med 2001;161:996-1002.

    CAS  PubMed  Google Scholar 

  19. Al-Mallah MH, Shareef MN. The role of cardiac magnetic resonance imaging in the assessment of non-ischemic cardiomyopathy. Heart Fail Rev 2011;16:369-80.

    PubMed  Google Scholar 

  20. Al Badarin F, Aljizeeri A, Almasoudi F, Al-Mallah MH. Assessment of myocardial blood flow and coronary flow reserve with positron emission tomography in ischemic heart disease: Current state and future directions. Heart Fail Rev 2017;22:441-53.

    PubMed  Google Scholar 

  21. Cerrato E, D’Ascenzo F, Biondi-Zoccai G, Calcagno A, Frea S, Grosso Marra W, et al. Cardiac dysfunction in pauci symptomatic human immunodeficiency virus patients: A meta-analysis in the highly active antiretroviral therapy era. Eur Heart J 2013;34:1432-6.

    CAS  PubMed  Google Scholar 

  22. Reinsch N, Neuhaus K, Esser S, Potthoff A, Hower M, Brockmeyer NH, et al. Prevalence of cardiac diastolic dysfunction in HIV-infected patients: Results of the HIV-HEART study. HIV Clin Trials 2010;11:156-62.

    PubMed  Google Scholar 

  23. Hsue PY, Hunt PW, Ho JE, Farah HH, Schnell A, Hoh R, et al. Impact of HIV infection on diastolic function and left ventricular mass. Circ Heart Fail 2010;3:132-9.

    PubMed  Google Scholar 

  24. Holloway CJ, Ntusi N, Suttie J, Mahmod M, Wainwright E, Clutton G, et al. Comprehensive cardiac magnetic resonance imaging and spectroscopy reveal a high burden of myocardial disease in HIV patients. Circulation 2013;128:814-22.

    PubMed  Google Scholar 

  25. Mayosi BM. Contemporary trends in the epidemiology and management of cardiomyopathy and pericarditis in sub-Saharan Africa. Heart (British Cardiac Society) 2007;93:1176-83.

    Google Scholar 

  26. Barbaro G, Di Lorenzo G, Grisorio B, Barbarini G. Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV-positive patients. Gruppo Italiano per lo Studio Cardiologico dei Pazienti Affetti da AIDS. N Engl J Med 1998;339:1093-9.

    CAS  PubMed  Google Scholar 

  27. Aljizeeri A, Sulaiman A, Alhulaimi N, Alsaileek A, Al-Mallah MH. Cardiac magnetic resonance imaging in heart failure: Where the alphabet begins! Heart Fail Rev 2017;22:385-99.

    PubMed  Google Scholar 

  28. Mc Ardle BA, Dowsley TF, DeKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828-37.

    PubMed  Google Scholar 

  29. Danias PG, Ahlberg AW, Clark BA, Messineo F, Levine MG, McGill CC, et al. Combined assessment of myocardial perfusion and left ventricular function with exercise technetium-99 m sestamibi gated single-photon emission computed tomography can differentiate between ischemic and nonischemic dilated cardiomyopathy. Am J Cardiol 1998;82:1253-8.

    CAS  PubMed  Google Scholar 

  30. Mody FV, Brunken RC, Stevenson LW, Nienaber CA, Phelps ME, Schelbert HR. Differentiating cardiomyopathy of coronary artery disease from nonischemic dilated cardiomyopathy utilizing positron emission tomography. J Am Coll Cardiol 1991;17:373-83.

    CAS  PubMed  Google Scholar 

  31. Tauberg SG, Orie JE, Bartlett BE, Cottington EM, Flores AR. Usefulness of thallium-201 for distinction of ischemic from idiopathic dilated cardiomyopathy. Am J Cardiol 1993;71:674-80.

    CAS  PubMed  Google Scholar 

  32. McCrohon JA, Moon JCC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJS, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54-9.

    CAS  PubMed  Google Scholar 

  33. Ghostine S, Caussin C, Habis M, Habib Y, Clément C, Sigal-Cinqualbre A, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J 2008;29:2133-40.

    PubMed  Google Scholar 

  34. Al-Mallah MH, Hachamovitch R, Dorbala S, Di Carli MF. Incremental prognostic value of myocardial perfusion imaging in patients referred to stress single-photon emission computed tomography with renal dysfunction. Circ Cardiovasc Imaging 2009;2:429-36.

    PubMed  Google Scholar 

  35. Dwivedi G, Cocker M, Yam Y, Achenbach S, Al-Mallah M, Berman DS, et al. Predictive value of cardiac computed tomography and the impact of renal function on all cause mortality (from Coronary Computed Tomography Angiography Evaluation for Clinical Outcomes). Am J Cardiol 2013;111:1563-9.

    PubMed  Google Scholar 

  36. Ahmed AM, Qureshi WT, O’Neal WT, Khalid F, Al-Mallah MH. Incremental prognostic value of SPECT-MPI in chronic kidney disease: A reclassification analysis. J Nucl Cardiol 2018;25:1658-73.

    PubMed  Google Scholar 

  37. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. J Am Coll Cardiol 2002;39:1151-8.

    PubMed  Google Scholar 

  38. Beanlands RSB, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: A randomized, controlled trial (PARR-2). J Am Coll Cardiol 2007;50:2002-12.

    PubMed  Google Scholar 

  39. Jamiel A, Ebid M, Ahmed AM, Ahmed D, Al-Mallah MH. The role of myocardial viability in contemporary cardiac practice. Heart Fail Rev 2017;22:401-13.

    PubMed  Google Scholar 

  40. Doi YL, Chikamori T, Tukata J, Yonezawa Y, Poloniecki JD, Ozawa T, et al. Prognostic value of thallium-201 perfusion defects in idiopathic dilated cardiomyopathy. Am J Cardiol 1991;67:188-93.

    CAS  PubMed  Google Scholar 

  41. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212-21.

    PubMed  Google Scholar 

  42. Agostini D, Babatasi G, Manrique A, Saloux E, Grollier G, Potier JC, et al. Impairment of cardiac neuronal function in acute myocarditis: Iodine-123-MIBG scintigraphy study. J Nucl Med 1998;39:1841-4.

    CAS  PubMed  Google Scholar 

  43. Kurihara M, Sasaki T, Ishiura H, Tsuji S. HIV dementia with a decreased cardiac (123)I-metaiodobenzylguanidine uptake masquerading as dementia with lewy bodies. Intern Med 2018;57:3007-10.

    PubMed  PubMed Central  Google Scholar 

  44. Al-Mallah MH, Sitek A, Moore SC, Di Carli M, Dorbala S. Assessment of myocardial perfusion and function with PET and PET/CT. J Nucl Cardiol 2010;17:498-513.

    PubMed  PubMed Central  Google Scholar 

  45. Calabrese LH, Albrecht M, Young J, McCarthy P, Haug M, Jarcho J, et al. Successful cardiac transplantation in an HIV-1-infected patient with advanced disease. N Engl J Med 2003;348:2323-8.

    PubMed  Google Scholar 

  46. Uriel N, Jorde UP, Cotarlan V, Colombo PC, Farr M, Restaino SW, et al. Heart transplantation in human immunodeficiency virus-positive patients. J Heart Lung Transplant 2009;28:667-9.

    PubMed  Google Scholar 

  47. Feher A, Srivastava A, Quail MA, Boutagy NE, Khanna P, Wilson L, et al. Serial assessment of coronary flow reserve by Rubidium-82 positron emission tomography predicts mortality in heart transplant recipients. JACC Cardiovasc Imaging 2018. https://doi.org/10.1016/j.jcmg.2018.08.025.

    Article  PubMed  Google Scholar 

  48. Mc Ardle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging 2014;7:930-7.

    PubMed  Google Scholar 

  49. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NAM, Freedman RA, Gettes LS, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guide. J Am Coll Cardiol 2013;61:e6-75.

    PubMed  Google Scholar 

  50. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147-239.

    PubMed  Google Scholar 

  51. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 2000;21:1387-96.

    CAS  PubMed  Google Scholar 

  52. Bernard Y, Meneveau N, Boucher S, Magnin D, Anguenot T, Schiele F, et al. Lack of agreement between left ventricular volumes and ejection fraction determined by two-dimensional echocardiography and contrast cineangiography in postinfarction patients. Echocardiography (Mount Kisco, NY) 2001;18:113-22.

    CAS  Google Scholar 

  53. Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008;35:851-85.

    CAS  PubMed  Google Scholar 

  54. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with t. Circulation 2009;119:1977-2016.

    PubMed  Google Scholar 

  55. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation. Expert Recomm 2018;72:3158-76.

    Google Scholar 

  56. Abdel-Aty H, Boyé P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J Am Coll Cardiol 2005;45:1815-22.

    PubMed  Google Scholar 

  57. Luetkens JA, Doerner J, Schwarze-Zander C, Wasmuth J-C, Boesecke C, Sprinkart AM, et al. Cardiac magnetic resonance reveals signs of subclinical myocardial inflammation in asymptomatic HIV-infected patients. Circulation 2016;9:e004091.

    PubMed  Google Scholar 

  58. Nelson MD, Szczepaniak LS, LaBounty TM, Szczepaniak E, Li D, Tighiouart M, et al. Cardiac steatosis and left ventricular dysfunction in HIV-infected patients treated with highly active antiretroviral therapy. JACC Cardiovasc Imaging 2014;7:1175-7.

    PubMed  PubMed Central  Google Scholar 

  59. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 2006;17:2359-62.

    PubMed  Google Scholar 

  60. Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, et al. T1-mapping and outcome in nonischemic cardiomyopathy: All-cause mortality and heart failure. JACC Cardiovasc Imaging 2016;9:40-50.

    PubMed  Google Scholar 

  61. Mordi I, Carrick D, Bezerra H, Tzemos N. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging 2016;17:797-803.

    PubMed  Google Scholar 

  62. Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S, et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging 2012;5:102-10.

    PubMed  Google Scholar 

  63. Akincioglu C, Berman DS, Nishina H, Kavanagh PB, Slomka PJ, Abidov A, et al. Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med 2005;46:1102-8.

    PubMed  Google Scholar 

  64. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277-314.

    PubMed  Google Scholar 

  65. Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: A practical approach. J Cardiovasc Magn Reson 2008;10:36.

    PubMed  PubMed Central  Google Scholar 

  66. Jung O, Haack HS, Buettner M, Betz C, Stephan C, Gruetzmacher P, et al. Renal AA-amyloidosis in intravenous drug users-a role for HIV-infection? BMC Nephrol 2012;13:151.

    PubMed  PubMed Central  Google Scholar 

  67. Cozzi PJ, Abu-Jawdeh GM, Green RM, Green D. Amyloidosis in association with human immunodeficiency virus infection. Clin Infect Dis 1992;14:189-91.

    CAS  PubMed  Google Scholar 

  68. (68) Nyatsanza F DJ, Cook M, Boothby M,. Cardiac AL Amyloidosis in a HIV positive patient.

  69. Treglia G, Glaudemans A, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging 2018;45:1945-55.

    CAS  PubMed  Google Scholar 

  70. Kwong RY, Heydari B, Abbasi S, Steel K, Al-Mallah M, Wu H, et al. Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function. Am J Cardiol 2015;116:622-9.

    PubMed  PubMed Central  Google Scholar 

  71. Al-Mallah M, Kwong RY. Clinical application of cardiac CMR. Rev Cardiovasc Med 2009;10:134-41.

    PubMed  Google Scholar 

  72. Strohm O, Schulz-Menger J, Pilz B, Osterziel KJ, Dietz R, Friedrich MG. Measurement of left ventricular dimensions and function in patients with dilated cardiomyopathy. J Magn Reson Imaging 2001;13:367-71.

    CAS  PubMed  Google Scholar 

  73. Xie B-Q, Tian Y-Q, Zhang J, Zhao S-H, Yang M-F, Guo F, et al. Evaluation of left and right ventricular ejection fraction and volumes from gated blood-pool SPECT in patients with dilated cardiomyopathy: Comparison with cardiac MRI. J Nucl Med 2012;53:584-91.

    PubMed  Google Scholar 

  74. Ward RP, Al-Mallah MH, Grossman GB, Hansen CL, Hendel RC, Kerwin TC, et al. American Society of Nuclear Cardiology review of the ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). J Nucl Cardiol 2007;14:e26-38.

    PubMed  Google Scholar 

  75. Reinsch N, Esser S, Gelbrich G, Brockmeyer N, Potthoff A, Schadendorf D, et al. Valvular manifestations of human immunodeficiency virus infection-results from the prospective, multicenter HIV-HEART study. J Cardiovasc Med (Hagerstown, Md) 2013;14:733-9.

    Google Scholar 

  76. Gebo KA, Burkey MD, Lucas GM, Moore RD, Wilson LE. Incidence of, risk factors for, clinical presentation, and 1-year outcomes of infective endocarditis in an urban HIV cohort. J Acquir Immune Defic Syndr 1999;2006(43):426-32.

    Google Scholar 

  77. Sivak JA, Vora AN, Navar AM, Schulte PJ, Crowley AL, Kisslo J, et al. An approach to improve the negative predictive value and clinical utility of transthoracic echocardiography in suspected native valve infective endocarditis. J Am Soc Echocardiogr 2016;29:315-22.

    PubMed  PubMed Central  Google Scholar 

  78. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015;36:3075-128.

    Google Scholar 

  79. Hill EE, Herijgers P, Claus P, Vanderschueren S, Peetermans WE, Herregods MC. Abscess in infective endocarditis: The value of transesophageal echocardiography and outcome: a 5-year study. Am Heart J 2007;154:923-8.

    PubMed  Google Scholar 

  80. Nel SH, Naidoo DP. An echocardiographic study of infective endocarditis, with special reference to patients with HIV. Cardiovasc J Afr 2014;25:50-7.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mahmood M, Kendi AT, Ajmal S, Farid S, O’Horo JC, Chareonthaitawee P, et al. Meta-analysis of 18F-FDG PET/CT in the diagnosis of infective endocarditis. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-017-1092-8.

    Article  PubMed  Google Scholar 

  82. Granados U, Fuster D, Pericas JM, Llopis JL, Ninot S, Quintana E, et al. Diagnostic accuracy of 18F-FDG PET/CT in infective endocarditis and implantable cardiac electronic device infection: A cross-sectional study. J Nucl Med 2016;57:1726-32.

    CAS  Google Scholar 

  83. Ahmed FZ, James J, Cunnington C, Motwani M, Fullwood C, Hooper J, et al. Early diagnosis of cardiac implantable electronic device generator pocket infection using 18F-FDG-PET/CT. Eur Heart J 2015;16:521-30.

    Google Scholar 

  84. Kim J, Feller ED, Chen W, Dilsizian V. FDG PET/CT imaging for LVAD associated infections. JACC 2014;7:839-42.

    PubMed  Google Scholar 

  85. Lancellotti P, Habib G, Oury C, Nchimi A. Positron emission tomography/computed tomography imaging in device infective endocarditis. Circulation 2015;132:1076-80.

    PubMed  Google Scholar 

  86. Erba PA, Conti U, Lazzeri E, Sollini M, Doria R, De Tommasi SM, et al. Added value of 99mTc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med 2012;53:1235-43.

    CAS  Google Scholar 

  87. Koneru S, Huang SS, Oldan J, Betancor J, Popovic ZB, Rodriguez LL, et al. Role of preoperative cardiac CT in the evaluation of infective endocarditis: Comparison with transesophageal echocardiography and surgical findings. Cardiovasc Diagn Ther 2018;8:439-49.

    PubMed  PubMed Central  Google Scholar 

  88. Al-Mallah MH, Aljizeeri A, Villines TC, Srichai MB, Alsaileek A. Cardiac computed tomography in current cardiology guidelines. J Cardiovasc Comput Tomogr 2015;9:514-23.

    PubMed  Google Scholar 

  89. Feuchtner GM, Stolzmann P, Dichtl W, Schertler T, Bonatti J, Scheffel H, et al. Multislice computed tomography in infective endocarditis: Comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol 2009;53:436-44.

    Google Scholar 

  90. Almodovar S, Cicalini S, Petrosillo N, Flores SC. Pulmonary hypertension associated with HIV infection: Pulmonary vascular disease: The global perspective. Chest 2010;137:6S-12S.

    PubMed  PubMed Central  Google Scholar 

  91. Degano B, Guillaume M, Savale L, Montani D, Jais X, Yaici A, et al. HIV-associated pulmonary arterial hypertension: Survival and prognostic factors in the modern therapeutic era. AIDS 2010;24:67-75.

    PubMed  Google Scholar 

  92. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013;62:D34-41.

    PubMed  Google Scholar 

  93. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endor. Eur Heart J 2016;37:67-119.

    PubMed  Google Scholar 

  94. Hsue PY, Deeks SG, Farah HH, Palav S, Ahmed SY, Schnell A, et al. Role of HIV and human herpesvirus-8 infection in pulmonary arterial hypertension. AIDS 2008;22:825-33.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Reichelt A, Hoeper MM, Galanski M, Keberle M. Chronic thromboembolic pulmonary hypertension: Evaluation with 64-detector row CT versus digital substraction angiography. Eur J Radiol 2009;71:49-54.

    PubMed  Google Scholar 

  96. Revel M-P, Faivre J-B, Remy-Jardin M, Delannoy-Deken V, Duhamel A, Remy J. Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology 2009;250:558-66.

    PubMed  Google Scholar 

  97. Tunariu N, Gibbs SJR, Win Z, Gin-Sing W, Graham A, Gishen P, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 2007;48:680-4.

    PubMed  Google Scholar 

  98. Mazraeshahi RM, Striet J, Oeltgen RC, Gerson MC. Myocardial SPECT images for diagnosis of pulmonary hypertension and right ventricular hypertrophy. J Nucl Med Technol 2010;38:175-80.

    PubMed  Google Scholar 

  99. Morimitsu T, Miyahara Y, Sonoda K, Kohno S. Iodine-123 metaiodobenzylguanidine myocardial imaging in patients with pulmonary hypertension. J Int Med Res 1997;25:53-61.

    CAS  PubMed  Google Scholar 

  100. Gómez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martínez ML, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol 2001;38:1137-42.

    PubMed  Google Scholar 

  101. Bokhari S, Raina A, Rosenweig EB, Schulze PC, Bokhari J, Einstein AJ, et al. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging 2011;4:641-7.

    PubMed  Google Scholar 

  102. Mielniczuk LM, Birnie D, Ziadi MC, DeKemp RA, DaSilva JN, Burwash I, et al. Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure. Circ Cardiovasc Imaging 2011;4:59-66.

    PubMed  Google Scholar 

  103. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 2005;45:1849-55.

    CAS  PubMed  Google Scholar 

  104. Tatebe S, Fukumoto Y, Oikawa-Wakayama M, Sugimura K, Satoh K, Miura Y, et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: A preliminary observational study. Eur Heart J Cardiovasc Imaging 2014;15:666-72.

    PubMed  Google Scholar 

  105. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007;104:1342-7.

    CAS  PubMed  Google Scholar 

  106. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;185:670-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Voges I, Al-Mallah MH, Scognamiglio G, Di Salvo G. Right heart-pulmonary circulation unit in congenital heart diseases. Heart Fail Clin 2018;14:283-95.

    PubMed  Google Scholar 

  108. Swift AJ, Rajaram S, Capener D, Elliot C, Condliffe R, Wild JM, et al. LGE patterns in pulmonary hypertension do not impact overall mortality. JACC 2014;7:1209-17.

    PubMed  Google Scholar 

  109. Soma S, Murali S, Benza R, Yamrozik JA, Williams RB, Doyle M, et al. LGE in pulmonary hypertension predicts clinical events. J Cardiovasc Magn Reson 2011;13:P297.

    PubMed Central  Google Scholar 

  110. Soliman EZ, Prineas RJ, Roediger MP, Duprez DA, Boccara F, Boesecke C, et al. Prevalence and prognostic significance of ECG abnormalities in HIV-infected patients: Results from the Strategies for Management of Antiretroviral Therapy study. J Electrocardiol 2011;44:779-85.

    PubMed  Google Scholar 

  111. Singh M, Arora R, Jawad E. HIV protease inhibitors induced prolongation of the QT Interval: Electrophysiology and clinical implications. Am J Ther 2010;17:e193-201.

    PubMed  Google Scholar 

  112. Hsu JC, Li Y, Marcus GM, Hsue PY, Scherzer R, Grunfeld C, et al. Atrial fibrillation and atrial flutter in human immunodeficiency virus-infected persons: Incidence, risk factors, and association with markers of HIV disease severity. J Am Coll Cardiol 2013;61:2288-95.

    PubMed  Google Scholar 

  113. Dickfeld T, Lei P, Dilsizian V, Jeudy J, Dong J, Voudouris A, et al. Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. JACC Cardiovasc Imaging 2008;1:73-82.

    PubMed  Google Scholar 

  114. Fahmy TS, Wazni OM, Jaber WA, Walimbe V, Di Biase L, Elayi CS, et al. Integration of positron emission tomography/computed tomography with electroanatomical mapping: A novel approach for ablation of scar-related ventricular tachycardia. Heart Rhythm 2008;5:1538-45.

    PubMed  Google Scholar 

  115. Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014;63:141-9.

    PubMed  Google Scholar 

  116. Foulon G, Wislez M, Naccache JM, Blanc FX, Rabbat A, Israel-Biet D, et al. Sarcoidosis in HIV-infected patients in the era of highly active antiretroviral therapy. Clin Infect Dis 2004;38:418-25.

    PubMed  Google Scholar 

  117. Crawford T, Mueller G, Sarsam S, Prasitdumrong H, Chaiyen N, Gu X, et al. Magnetic resonance imaging for identifying patients with cardiac sarcoidosis and preserved or mildly reduced left ventricular function at risk of ventricular arrhythmias. Circ Arrhythm Electrophysiol 2014;7:1109-15.

    PubMed  Google Scholar 

  118. Shelke AB, Aurangabadkar HU, Bradfield JS, Ali Z, Kumar KS, Narasimhan C. Serial FDG-PET scans help to identify steroid resistance in cardiac sarcoidosis. Int J Cardiol 2017;228:717-22.

    PubMed  Google Scholar 

  119. Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med 2004;45:1989-98.

    PubMed  Google Scholar 

  120. Sorajja P, Chareonthaitawee P, Ommen SR, Miller TD, Hodge DO, Gibbons RJ. Prognostic utility of single-photon emission computed tomography in adult patients with hypertrophic cardiomyopathy. Am Heart J 2006;151:426-35.

    PubMed  Google Scholar 

  121. Shirani J, Dilsizian V. Nuclear cardiac imaging in hypertrophic cardiomyopathy. J Nucl Cardiol 2011;18:123-34.

    PubMed  Google Scholar 

  122. Terai H, Shimizu M, Ino H, Yamaguchi M, Hayashi K, Sakata K, et al. Cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy with malignant ventricular tachyarrhythmias. J Nucl Cardiol 2003;10:304-10.

    PubMed  Google Scholar 

  123. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 2005;46:101-5.

    PubMed  Google Scholar 

  124. Becker MAJ, Cornel JH, van de Ven PM, van Rossum AC, Allaart CP, Germans T. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: A review and meta-analysis. JACC Cardiovasc Imaging 2018;11:1274-84.

    PubMed  Google Scholar 

  125. Coleman GC, Shaw PW, Balfour PC, Gonzalez JA, Kramer CM, Patel AR, et al. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging 2017;10:411-20.

    PubMed  Google Scholar 

  126. Pursnani A, Jacobs JE, Saremi F, Levisman J, Makaryus AN, Capunay C, et al. Coronary CTA assessment of coronary anomalies. J Cardiovasc Comput Tomogr 2012;6:48-59.

    PubMed  Google Scholar 

  127. Alqarqaz M, Zaidan M, Al-Mallah MH. Hypertrophic cardiomyopathy and anomalous left coronary artery: A rare combination. J Cardiovasc Med (Hagerstown) 2011;12:915-8.

    Google Scholar 

  128. Behar JM, Rajani R, Pourmorteza A, Preston R, Razeghi O, Niederer S, et al. Comprehensive use of cardiac computed tomography to guide left ventricular lead placement in cardiac resynchronization therapy. Heart Rhythm 2017;14:1364-72.

    PubMed  PubMed Central  Google Scholar 

  129. Mbulaiteye SM, Parkin DM, Rabkin CS. Epidemiology of AIDS-related malignancies an international perspective. Hematol Oncol Clin N Am 2003;17(673-96):v.

    Google Scholar 

  130. Fisher SD, Lipshultz SE. Epidemiology of cardiovascular involvement in HIV disease and AIDS. Ann NY Acad Sci 2001;946:13-22.

    CAS  PubMed  Google Scholar 

  131. d’Amati G, di Gioia CR, Gallo P. Pathological findings of HIV-associated cardiovascular disease. Ann NY Acad Sci 2001;946:23-45.

    PubMed  Google Scholar 

  132. Rahbar K, Seifarth H, Schäfers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med 2012;53:856-63.

    CAS  PubMed  Google Scholar 

  133. Al-Mallah MH, Almasoudi F, Ebid M, Ahmed AM, Jamiel A. Multimodality imaging of pericardial diseases. Curr Treat Options Cardiovasc Med 2017;19:89.

    PubMed  Google Scholar 

  134. Heidenreich PA, Eisenberg MJ, Kee LL, Somelofski CA, Hollander H, Schiller NB, et al. Pericardial effusion in AIDS. Incidence and survival. Circulation 1995;92:3229-34.

    CAS  PubMed  Google Scholar 

  135. Klein AL, Abbara S, Agler DA, Appleton CP, Asher CR, Hoit B, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: Endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2013;26(965-1012):e15.

    Google Scholar 

  136. Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 2009;11:14.

    PubMed  PubMed Central  Google Scholar 

  137. Strobel K, Schuler R, Genoni M. Visualization of pericarditis with fluoro-deoxy-glucose-positron emission tomography/computed tomography. Eur Heart J 2008;29:1212.

    PubMed  Google Scholar 

  138. Robbs JV, Paruk N. Management of HIV vasculopathy - a South African experience. Eur J Vasc Endovasc Surg 2010;39(Suppl 1):S25-31.

    PubMed  Google Scholar 

  139. Javed MA, Sheppard MN, Pepper J. Aortic root dilation secondary to giant cell aortitis in a human immunodeficiency virus-positive patient. Eur J Cardio-thorac Surg 2006;30:400-1.

    Google Scholar 

  140. Hartlage GR, Palios J, Barron BJ, Stillman AE, Bossone E, Clements SD, et al. Multimodality imaging of aortitis. JACC Cardiovasc Imaging 2014;7:605-19.

    PubMed  Google Scholar 

  141. Chae EJ, Do KH, Seo JB, Park SH, Kang JW, Jang YM, et al. Radiologic and clinical findings of Behcet disease: Comprehensive review of multisystemic involvement. Radiographics 2008;28:e31.

    PubMed  Google Scholar 

  142. Gornik HL, Creager MA. Aortitis. Circulation 2008;117:3039-51.

    PubMed  PubMed Central  Google Scholar 

  143. Raman SV, Aneja A, Jarjour WN. CMR in inflammatory vasculitis. J Cardiovasc Magn Reson 2012;14:82.

    PubMed  PubMed Central  Google Scholar 

  144. Lee JC, Branch KR, Hamilton-Craig C, Krieger EV. Evaluation of aortic regurgitation with cardiac magnetic resonance imaging: A systematic review. Heart (British Cardiac Society) 2018;104:103-10.

    Google Scholar 

  145. Besson FL, Parienti JJ, Bienvenu B, Prior JO, Costo S, Bouvard G, et al. Diagnostic performance of (1)(8)F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2011;38:1764-72.

    PubMed  Google Scholar 

  146. Zeina A-R, Slobodin G, Gleb S, Naschitz JE, Loberman Z, Barmeir E. Isolated periaortitis: Clinical and imaging characteristics. Vasc Health Risk Manage 2007;3:1083-6.

    Google Scholar 

  147. Blockmans D, Coudyzer W, Vanderschueren S, Stroobants S, Loeckx D, Heye S, et al. Relationship between fluorodeoxyglucose uptake in the large vessels and late aortic diameter in giant cell arteritis. Rheumatology (Oxford, England) 2008;47:1179-84.

    CAS  Google Scholar 

  148. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: The AGEhIV cohort study. Clin Infect Dis 2014;59:1787-97.

    CAS  PubMed  Google Scholar 

  149. Beckman JA, Duncan MS, Alcorn CW, So-Armah K, Butt AA, Goetz MB, et al. Association of human immunodeficiency virus infection and risk of peripheral artery disease. Circulation 2018;138:255-65.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Benjamin LA, Bryer A, Emsley HC, Khoo S, Solomon T, Connor MD. HIV infection and stroke: Current perspectives and future directions. Lancet Neurol 2012;11:878-90.

    PubMed  PubMed Central  Google Scholar 

  151. Hur J, Choi BW. Cardiac CT imaging for ischemic stroke: Current and evolving clinical applications. Radiology 2017;283:14-28.

    PubMed  Google Scholar 

  152. Pagan RJ, Parikh PP, Mergo PJ, Gerber TC, Mankad R, Freeman WD, et al. Emerging role of cardiovascular CT and MRI in the evaluation of stroke. AJR Am J Roentgenol 2015;204:269-80.

    PubMed  Google Scholar 

Download references

Disclosures

Dr. Diwakar Jain is on the speaker bureau of Astellas, and has received consultancy from Astellas and Regeneron. Dr. Girish Dwivedi is on the speaker’s bureau of Astra Zeneca and Amgen. Drs. Ahmed Aljizeeri, Gary Small, Saurabh Malhotra, Ronny Buechel, and Mouaz H. Al-Mallah have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah MD, MSc, FASNC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljizeeri, A., Small, G., Malhotra, S. et al. The role of cardiac imaging in the management of non-ischemic cardiovascular diseases in human immunodeficiency virus infection. J. Nucl. Cardiol. 27, 801–818 (2020). https://doi.org/10.1007/s12350-019-01676-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01676-1

Keywords

Navigation