Skip to main content

Advertisement

Log in

Multi-modality imaging: Bird’s eye view from the 2018 American Heart Association Scientific Sessions

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

This review summarizes key imaging studies that were presented at the American Heart Association Scientific Sessions 2018 in Chicago related to the fields of nuclear cardiology (including single photon emission computed tomography and positron emission tomography), cardiac computed tomography, cardiac magnetic resonance, and echocardiography. The aim of this bird’s eye view is to inform readers of the various studies discussed at the meeting from these imaging modalities. While this review is directed to the benefit of those of us who were not able to attend the conference, we find that a general overview may also be useful to those that did since it is often difficult to get exposure to all abstracts at large meetings. Further, we hope that the presentation of multiple imaging studies in a single synthesized review will stimulate new ideas for future research in imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AHA 2018:

2018 American Heart Association Scientific Sessions

CAC:

Coronary artery calcium

CAD:

Coronary artery disease

CCTA:

Coronary computed tomography angiography

CD/MI:

Cardiac death or non-fatal myocardial infarction

CFR:

Coronary flow reserve

CMR:

Cardiac magnetic resonance

CRF:

Cardiorespiratory fitness

CT:

Computed tomography

FFR:

Fractional flow reserve

LGE:

Late gadolinium enhancement

LVEF:

Left ventricular ejection fraction

MPI:

Myocardial perfusion imaging

PCAT:

Peri-coronary adipose tissue

PET:

Positron computed tomography

SPECT:

Single photon emission computed tomography

References

  1. AlJaroudi WA, Lloyd SG, Hage FG. Multi-modality imaging: Bird’s eye view from the 2017 American Heart Association Scientific Sessions. J Nucl Cardiol 2018;25:678-84.

    Article  PubMed  Google Scholar 

  2. AlJaroudi WA, Lloyd SG, Chaudhry FA, Hage FG. Multi-modality imaging: Bird’s eye view from the 2016 American Heart Association Scientific Sessions. J Nucl Cardiol 2017;24:946-51.

    Article  PubMed  Google Scholar 

  3. Einstein AJ, Lloyd SG, Chaudhry FA, AlJaroudi WA, Hage FG. Multi-modality Imaging: Bird’s eye view from the 2015 American Heart Association Scientific Sessions. J Nucl Cardiol 2016;23:235-43.

    Article  PubMed  Google Scholar 

  4. AlJaroudi WA, Einstein AJ, Chaudhry FA, Lloyd SG, Hage FG. Multi-modality imaging: Bird’s-eye view from the 2014 American Heart Association Scientific Sessions. J Nucl Cardiol 2015;22:364-71.

    Article  PubMed  Google Scholar 

  5. Saito Y, Arimoto T, Kutsuzawa D, Yokoyoma M, Tsuchiya H, Takahashi H, et al. The association between cardiac sympathetic nervous function and cardiac rehabilitation responder. Circulation 2018;138:A10880.

    Google Scholar 

  6. Cantu S, Berman DS, Hayes SW, Friedman J, Azarbal B. Association of exercise capacity, heart rate recovery, chronotropic incompetence and all-cause mortality during exercise-myocardial perfusion single-photon emission computerized tomography in patients with left ventricular systolic Dysfunction. Circulation 2018;138:A14437.

    Google Scholar 

  7. Al Badarin F, Spertus JA, Chan PC, Patel KK, Kennedy KF, Bateman TM. Differences in post-test invasive angiography referral patterns between PET and SPECT. Circulation 2018;138:A11080.

    Google Scholar 

  8. AlMallah M, Masoudi F, Ebid M, Ahmed A. SPECT myocardial perfusion imaging adds incremental prognostic value over cardiorespiratory fitness. Circulation 2018;138:A11555.

    Google Scholar 

  9. van Diemen P, Driessen RS, Stuijfzand WJ, Raijmakers PJ, Schumacher SP, Min JK, et al. The impact of scan quality on the diagnostic performance of CCTA, SPECT and PET for Diagnosing myocardial ischemia as defined by fractional flow reserve: A PACIFIC-trial substudy. Circulation 2018;138:A14778.

    Google Scholar 

  10. Chaudhry F, Adapoe MK, Johnson KW, Petrov A, Chaudhry FF, Pak KY, et al. Nuclear molecular imaging of apoptosis in heart transplant rejection. Circulation 2018;138:A16168.

    Google Scholar 

  11. Patel KK, Badarin FA, Spertus JA, Chan PS, Arnold SV, Kennedy KF, et al. Abstract 12566: Ischemia on positron emission tomography (PET) myocardial perfusion imaging (MPI) identifies patients with improvement in angina and health status post-revascularization. Circulation 2018;138:A12566.

    Google Scholar 

  12. AlMallah MH, Masoudi F, Ahmed A, Aljizeeri A. Abstract 11557: Referral to coronary angiography among patients with moderate or severe ischemia: Implications for the ISCHEMIA trial. Circulation 2018;138:A11557.

    Google Scholar 

  13. McCubrey RO, Min DB, Meredith KG, Biswas S, Knight S, Mason SM, et al. Abstract 11540: Predictive ability of cac and myocardial blood flow: In a real world setting. Circulation 2018;138:A11540.

    Google Scholar 

  14. Patel KK, Spertus JA, Chan PS, Badarin FA, Kennedy KF, Sperry BW, et al. Abstract 11237: Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization. Circulation 2018;138:A11237.

    Google Scholar 

  15. AlMallah MH, Ahmed A, Alfaris M, Ahmed D, Suleiman I, Aljizeeri A. Abstract 11553: Incremental prognostic value of positron emission tomography derived hyperemic myocardial blood flow: Comparison with coronary flow reserve. Circulation 2018;138:A11553.

    Google Scholar 

  16. Dey AK, Goyal A, Elnabawi Y, Chaturvedi A, Chung JH, Aberra T, et al. Abstract 12603: Increased Resting amygdala activity relates to increased prevalence of high risk coronary plaque in psoriasis. Circulation 2018;138:A12603.

    Google Scholar 

  17. Razalan MGF, Centanni R, Barton GP, McMillan AB, Goss KN. Abstract 16689: Simultaneous assessment of cardiac metabolism and function using PET/MR with continuous FDG infusion. Circulation 2018;138:A16689.

    Google Scholar 

  18. Mirbolouk H, Charkhchi P, Uddin SMI, Orimoloye OA, Shaw L, Berman DS, et al. Abstract 16618: Prognostic significance of coronary artery calcium (CAC) score among patients on statin therapy: Results of coronary artery calcium consortium, a multicenter cohort study. Circulation 2018;138:A16618A.

    Google Scholar 

  19. Hu-Wang E, Kureshi F, Leifer ES, Acharya T, Sathya B, Yu JH, et al. Abstract 12022: Calcium scoring improves pretest probability estimation of obstructive coronary artery disease in a real world population. Circulation 2018;138:A12022.

    Google Scholar 

  20. Foldyna B, Udelson JE, Karady J, Banerji D, Lu MT, Mayrhofer T, et al. Abstract 16375: Potential downstream effects of replacing diamond-forrester with observed contemporary prevalence of obstructive CAD: The promise trial. Circulation 2018;138:A16375.

    Google Scholar 

  21. Han D, Kolli KK, Gransar H, Lin FY, Lee JH, Rizvi A, et al. Abstract 15831: Novel prediction model based on machine learning algorithm to identify rapid coronary plaque progressor using quantitative assessment of coronary computed tomography angiography. Circulation 2018;138:A15831.

    Article  Google Scholar 

  22. Goeller M, Tamarappoo Balaji K, Kwan Alan C, Otaki Y, Cadet S, Commandeur F, et al. Abstract 15929: Relationship between changes in pericoronary adipose tissue attenuation and plaque progression by coronary CTA. Circulation 2018;138:A15929.

    Google Scholar 

  23. Yamauchi Y, Kanzaki Y, Ozeki M, Fujisaka T, Takeda Y, Morita H, et al. Abstract 11110: Diagnostic accuracy of on-site CT-fractional flow reserve (CT-FFR) to detect coronary artery disease. Circulation 2018;138:A11110.

    Google Scholar 

  24. Yamauchi Y, Kanzaki Y, Ozeki M, Fujisaka T, Takeda Y, Morita H, et al. Abstract 11173: feasibility of novel on-site operated CT-fractional flow reserve (CT-FFR) to detect of coronary artery disease in patients with severe coronary artery calcification. Circulation 2018;138:A11173.

    Google Scholar 

  25. Kawaguchi YO, Fujimoto S, Kumamaru KK, Otsuka Y, Kato E, Aoshima C, et al. Abstract 12206: Fully automated 3D deep-learning analysis of coronary CT Angiography: Prediction of fractional flow reserve. Circulation 2018;138:A12206.

    Google Scholar 

  26. Kazmirczak F, Chen K, Okasha O, Farzaneh-Far A, Duval S, von Wald L, et al. Rapid visual pathology-based late gadolinium enhancement phenotyping on cardiovascular magnetic resonance imaging improves risk stratification of patients with suspected cardiac sarcoidosis. Circulation 2018;138:A15984.

    Google Scholar 

  27. Chen K, Kazmirczak F, Okasha O, Farzaneh-Far A, Shenoy C. Late gadolinium enhancement cardiovascular magnetic resonance imaging characteristics predict the yield of endomyocardial biopsy in patients with suspected cardiac sarcoidosis. Circulation 2018;138:A17337.

    Google Scholar 

  28. Habib M, Adler A, Fardfini K, Hanneman K, Rowin E, Maron M, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: A cardiac magnetic resonance study. Circulation 2018;138:A13069.

    Google Scholar 

  29. Doeblin PJ, Pieske B, Kelle S, Gebker R, Lapinskas T, Edelmann F, et al. HFmEF differs from hfpef and hfref in advanced cmr imaging markers of adverse cardiac remodeling. Circulation 2018;138:A13417.

    Google Scholar 

  30. Bhatia S, Jaffe A, Gersh B, Chandrasekaran K, Anstine C, Anavekar N. Spectrum of disease and outcomes of troponin positive, angiogram negative patients assessed by cardiac MRI. Circulation 2018;138:A12156.

    Google Scholar 

  31. Evans KL, Indorkar R, Kwong R, Romano S, White BE, Chia RC, et al. Global coronary flow reserve measured during stress cardiac magnetic resonance imaging is an independent predictor of adverse cardiovascular events. Circulation 2018;138:A12903.

    Google Scholar 

  32. Iwahashi N, Takahashi A, Akiyama E, Okada K, Matsuzawa Y, Konishi M, et al. Global strain estimated by 3D speckle tracking combined with E/E’ is the strongest predictor in patients with STEMI. Circulation 2018;138:A12462.

    Google Scholar 

  33. Iwakura K, Okamura A, Koyama Y, Inoue K, Iwamoto M, Nagai H, et al. Impaired global longitudinal strain is associated with poor prognosis even in patients with preserved ejection fraction after myocardial infarction. Circulation 2018;138:A13236.

    Google Scholar 

  34. Aljaroudi W, Alraies MC, Halley C, Rodriguez L, Grimm RA, Thomas JD, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 2012;125:782-8.

    Article  PubMed  Google Scholar 

  35. Ozbec BT. Diastolic dysfunction is a stronger predictor of cardiovascular morbidity and mortality in individuals with diabetes as compared to individuals without diabetes in the general population. Circulation 2018;138:A12554.

    Google Scholar 

  36. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277-314.

    Article  PubMed  Google Scholar 

  37. Tsujiuchi M, Ebato M, Maezawa H, Nogi A, Mizukami T, Nagumo S, et al. Categorization of left ventricular diastolic dysfunction using left atrial strains calculated by three dimensional speckle tracking analysis. Circulation 2018;138:A12863.

    Google Scholar 

  38. Kawamura I, Tanaka R, Yoshizane T, Minatoguchi S, Sato H, Ono K, et al. Novel and noninvasive evaluation of left ventricular diastolic dysfunction in patients with normal ejection fraction using 3-dimensional speckle echocardiography. Circulation 2018;138:A11143.

    Google Scholar 

  39. Kagiyama N, Sugahar M, Soyama Y, Adelstein E, Gorcsan J. Left atrial strain has additive prognostic value to left ventricle global longitudinal strain in patients receiving cardiac resynchronization therapy. Circulation 2018;138:A13227.

    Google Scholar 

  40. Kawamura I, Tanaka R, Yoshizane T, Minatoguchi S, Saeki M, Nagaya M, et al. Noninvasive evaluation of left ventricular systolic and diastolic properties in hypertension using real-time one-beat 3-dimensional speckle tracking echocardiography with high volume rate. Circulation 2018;138:A11116.

    Google Scholar 

  41. Utsunomiya H, Yamamoto H, Shimada A, Kitagawa T, Hidaka T, Kihara Y. Increased epicardial adipose tissue volume is associated with left ventricular diastolic function in patients with zero coronary artery calcium score. Circulation 2018;138:A17402.

    Google Scholar 

  42. Lee L, Kinno M, Schultz R, Kane B, Cascino G, Maganti K. Use of contrast-enhanced echocardiography for evaluating pulmonary artery pressure. Circulation 2018;138:A17391.

    Google Scholar 

  43. Lekhakul A, Fine N, Chen L, Kane GC. Right ventricular longitudinal systolic strain for prediction of long-term mortality in patients with pulmonary hypertension. Circulation 2018;138:A13089.

    Google Scholar 

  44. Pandat S, Nagaura T, Nair S, Reinier K, Uy-Evanado A, Rusinaru C, et al. An association between right ventricular dysfunction and sudden cardiac death. Circulation 2018;138:A12624.

    Google Scholar 

  45. Towheed A, Sabbagh E, Assiri SA, Chowdhury MA, Moukarbel GV, Schwann T, et al. Association of right ventricular dysfunction by echocardiographic parameters with short term adverse outcomes after left sided valvular surgery. Circulation 2018;138:A12165.

    Google Scholar 

  46. Zhang B, Jia D, Song H, Zhang L, Mei D. Measurement of left atrial appendage orifice perimeter using echocardiographic 3D printed model for the guidance of LAmbre™Occluder selection. Circulation 2018;138:A10539.

    Google Scholar 

  47. Zhang B, Chen S, Yang Y, Jia D, Zhou Q. Preliminary precision study of 3D printing heart model by multimodal medicalimage fusion technology. Circulation 2018;138:A10540.

    Google Scholar 

  48. Stanger D. Insonation vs auscultation in valvular disorders: Is aortic stenosis the exception? Circulation 2018;138:A10943.

    Google Scholar 

  49. Yang J, Spahillari A, McCormick I, Quinn G, Manning W. On-call transthoracic echocardiographic interpretation by first year cardiology fellows: Comparison with attending cardiologists. Circulation 2018;138:A10780.

    Google Scholar 

Download references

Disclosures

Drs. Al-Mallah, Lloyd and Aljaroudi report no conflicts of interest. Dr. Doukky reports research grant support from Astellas Pharma (Northbrook, IL). Dr. Hage reports research grant support from Astellas Pharma and GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi G. Hage MD, MASNC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mallah, M.H., Lloyd, S.G., Doukky, R. et al. Multi-modality imaging: Bird’s eye view from the 2018 American Heart Association Scientific Sessions. J. Nucl. Cardiol. 26, 645–654 (2019). https://doi.org/10.1007/s12350-019-01603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01603-4

Keywords

Navigation