Skip to main content

Advertisement

Log in

Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

This study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected coronary artery disease (CAD).

Methods

Resting and stress 13NH3 dynamic PET were performed in 70 patients. Using ≥ 70% diameter stenosis in invasive coronary angiography (ICA) to identify significant CAD, we examined the diagnostic value of SEN- and SEP-MBF, and coronary flow reserve (CFR) vs. the corresponding conventional data averaged on the whole wall thickness.

Results

ICA demonstrated 36 patients with significant CAD. Their global stress average [1.61 (1.26, 1.87) mL·min−1·g−1], SEN [1.39 (1.2, 1.59) mL·min−1·g−1] and SEP [1.22 (0.96, 1.44) mL·min−1·g−1] MBF were significantly lower than in the 34 no-CAD patients: 2.05 (1.76, 2.52), 1.72 (1.53, 1.89) and 1.46 (1.23, 1.89) mL·min−1·g−1, respectively, all P < .005. In the 60 CAD vs. the 150 non-CAD territories, stress average MBF was 1.52 (1.10, 1.83) vs. 2.06 (1.69, 2.48) mL·min−1·g−1, SEN-MBF 1.33 (1.02, 1.58) vs. 1.66 (1.35, 1.93) mL·min−1·g−1, and SEP-MBF 1.07 (0.80, 1.29) vs. 1.40 (1.12, 1.69) mL·min−1·g−1, respectively, all P < .05. Using receiver operating characteristics analysis for the presence of significant CAD, the areas under the curve (AUC) were all significant (P < .0001 vs. AUC = 0.5) and similar: stress average MBF = 0.79, SEN-MBF = 0.75, and SEP-MBF = 0.73. AUC was 0.77 for the average CFR, 0.75 for SEN, and 0.70 for SEP CFR. The stress transmural perfusion gradient (TPG) AUC (0.51) was not significant. However, stress TPG was significantly lower in segments subtended by totally occluded arteries vs. those subtended by sub-total stenoses: 1.10 (0.86, 1.33) vs. 1.24 (0.98, 1.56), respectively, P < .005.

Conclusion

Automatic assessment of SEN- and SEP-MBF (and CFR) using 13NH3 PET gives reasonable results that are in good agreement with the conventional average whole wall thickness data. Further studies are needed to examine the utility of layer measurements such as in patients with hibernating myocardium or microvascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CFR:

Coronary flow reserve

ICA:

Invasive coronary angiography

LV:

Left ventricle/ventricular

MBF:

Myocardial blood flow

PET:

Positron emission tomography

RV:

Right ventricle/ventricular

SEN:

Sub-endocardium/endocardial

SEP:

Sub-epicardium/epicardial

TPG:

Transmural perfusion gradient

References

  1. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 2010;3:623-40.

    Article  Google Scholar 

  2. Sciagrà R, Passeri A, Bucerius J, Verberne HJ, Slart RH, Lindner O, Gimelli A, Hyafil F, Agostini D, Übleis C, Hacker M, Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Clinical use of quantitative cardiac perfusion PET: Rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging 2016;43:1530-45.

    Article  Google Scholar 

  3. Sciagrà R. Positron-emission tomography myocardial blood flow quantification in hypertrophic cardiomyopathy. Q J Nucl Med Mol Imaging 2016;60:354-61.

    Google Scholar 

  4. Choudhury L, Elliott P, Rimoldi O, Ryan M, Lammertsma AA, Boyd H, et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res Cardiol 1999;94:49-59.

    Article  CAS  Google Scholar 

  5. Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM, et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2008;294:H986-93.

    Article  CAS  Google Scholar 

  6. Sciagrà R, Passeri A, Cipollini F, Castagnoli H, Olivotto I, Burger C, et al. Validation of pixel-wise parametric mapping of myocardial blood flow with 13NH3 PET in patients with hypertrophic cardiomyopathy. Eur J Nucl Med Mol Imaging 2015;42:1581-8.

    Article  Google Scholar 

  7. Yalçin H, Valenta I, Yalçin F, Corona-Villalobos C, Vasquez N, Ra J, et al. Effect of diffuse subendocardial hypoperfusion on left ventricular cavity size by 13N-ammonia perfusion PET in patients with hypertrophic cardiomyopathy. Am J Cardiol 2016;118:1908-15.

    Article  Google Scholar 

  8. Sciagrà R, Calabretta R, Cipollini F, Passeri A, Castello A, Cecchi F, et al. Myocardial blood flow and left ventricular functional reserve in hypertrophic cardiomyopathy: A 13NH3 gated PET study. Eur J Nucl Med Mol Imaging 2017;44:866-75.

    Article  Google Scholar 

  9. Vermeltfoort IA, Raijmakers PG, Lubberink M, Germans T, van Rossum AC, Lammertsma AA, et al. Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with (15)O-labeled water and positron emission tomography. J Nucl Cardiol 2011;18:650-6.

    Article  PubMed Central  Google Scholar 

  10. Hoffman JI. Transmural myocardial perfusion. Prog Cardiovasc Dis 1987;29:429-64.

    Article  CAS  Google Scholar 

  11. Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 2011;300:H1090-100.

    Article  CAS  Google Scholar 

  12. Pan J, Huang S, Lu Z, Li J, Wan Q, Zhang J, et al. Comparison of myocardial transmural perfusion gradient by magnetic resonance imaging to fractional flow reserve in patients with suspected coronary artery disease. Am J Cardiol 2015;115:1333-40.

    Article  Google Scholar 

  13. Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, et al. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis. Eur Radiol 2017;27:2309-16.

    Article  Google Scholar 

  14. Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: A [15O]H2O PET study. Eur Heart J 2014;35:2094-105.

    Article  Google Scholar 

  15. Giubbini R, Peli A, Milan E, Sciagrà R, Camoni L, Albano D, Italian Nuclear Cardiology Group (GICN), et al. Comparison between the summed difference score and myocardial blood flow measured by 13N-ammonia. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-017-0789-z.

    Article  Google Scholar 

  16. Peli A, Camoni L, Zilioli V, Durmo R, Bonacina M, Bertagna F, et al. Attenuation correction in myocardial perfusion imaging affects the assessment of infarct size in women with previous inferior infarct. Nucl Med Commun 2018;39:290-6.

    Article  Google Scholar 

  17. Giubbini RM, Gabanelli S, Lucchini S, Merli G, Puta E, Rodella C, et al. The value of attenuation correction by hybrid SPECT/CT imaging on infarct size quantification in male patients with previous inferior myocardial infarct. Nucl Med Commun 2011;32:1026-32.

    Article  Google Scholar 

  18. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539-42.

    Article  Google Scholar 

  19. DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallée JP, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol 1996;3:494-507.

    Article  CAS  Google Scholar 

  20. Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O–H2O PET/CT scan. J Nucl Med 2011;52:745-9.

    Article  Google Scholar 

  21. Berti V, Sciagrà R, Neglia D, Pietilä M, Scholte AJ, Nekolla S, et al. Segmental quantitative myocardial perfusion with PET for the detection of significant coronary artery disease in patients with stable angina. Eur J Nucl Med Mol Imaging 2016;43:1522-9.

    Article  Google Scholar 

  22. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging 2009;2:1009-23.

    Article  Google Scholar 

Download references

Disclosures

Tomasz Kubik, PhD, is Consultant at PMOD Technologies LLC, Zurich, Switzerland. All other authors have no conflict of interest and nothing to disclose.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the Ethical Standards of the Institutional and/or National Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sciagrà MD.

Additional information

Funding

This work was supported by the Italian Ministry of Health (RF 2010-2313451 and NET-2011-02347173).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciagrà, R., Milan, E., Giubbini, R. et al. Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man. J. Nucl. Cardiol. 27, 1665–1674 (2020). https://doi.org/10.1007/s12350-018-1445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1445-y

Keywords

Navigation