Skip to main content

Advertisement

Log in

Prognostic value of left ventricular mechanical dyssynchrony indices in long-standing type II diabetes mellitus with normal perfusion and left ventricular systolic functions on SPECT-MPI

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Objective

To test whether phase analysis indices from SPECT-MPI for left ventricular mechanical dyssynchrony (LVMD) are predictors of major adverse cardiac events (MACEs) in long-standing diabetes mellitus (DM).

Methods

A total of 136 DM patients with normal perfusion and left ventricular systolic functions were followed up for about two years and divided into two groups according to the presence and the absence of MACEs.

Result

Thirteen (9.5%) patients experienced MACEs during follow-up. Patients experiencing MACEs showed significantly higher phase standard deviation (PSD) and wider phase bandwidth (PBW) than those who did not. Moreover, both PSD and PBW showed significant correlations (r = 0.25 and 0.27; P < 0.05) with duration of DM. Logistic regression analysis revealed significant associations of DM duration, microvascular complications, and LVMD indices for predicting MACEs. Kaplan–Meier event-free survival analysis revealed significantly higher rate of MACEs (Logrank = 10.02; P = 0.001) in patients with high PSD and wide PBW. An overall fit model consisting of high-PSD and wide-PBW group was improved with the addition of microvascular complications (χ2 = 15.9; P = 0.03) and further by addition of DM duration of ≥ 15 years (χ2 = 24.3; P = 0.007) as variables.

Conclusion

LVMD indices are novel prognostic markers in diabetic patients with normal perfusion and left ventricular systolic functions and their increases in magnitudes with DM-duration and in the presence of microvascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

LVMD:

Left ventricular mechanical dyssynchrony

MACEs:

Major adverse cardiac events

PSD:

Phase standard deviation

PBW:

Phase bandwidth

CAD:

Coronary artery disease

DCM:

Diabetic cardiomyopathy

TDI:

Tissue doppler imaging

LVEF:

Left ventricle ejection fraction

SPECT-MPI:

Single-photon emission computed tomography myocardial perfusion imaging

CRT:

Cardiac resynchronization therapy

LVD:

Left ventricular dyssynchrony

References

  1. Roglic G. WHO Global report on diabetes: A summary. Int J Non-Commun Dis 2016;1:3-8.

    Article  Google Scholar 

  2. Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: An update. Int J Hypertens 2013;2013:653789.

    Article  Google Scholar 

  3. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2017.

  4. de Simone G, Devereux RB, Chinali M, Lee ET, Galloway JM, Barac A, et al. Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens 2010;28:353-60.

    Article  Google Scholar 

  5. Lee A, Zhang Q, Yip G, Fang F, Liang Y, Xie J, et al. LV Mechanical dyssynchrony in heart failure with preserved ejection fraction complicating acute coronary syndrome. JACC 2011;4:348-57.

    Google Scholar 

  6. Yu C, Lin H, Zhang Q, Sanderson J. High prevalence of left ventricular systolic and diastolic dyssynchrony in patients with congestive heart failure and normal QRS duration. Heart 2003;89:45-60.

    Google Scholar 

  7. Wang J, Kurrelmeyer K, Torre-Amione G, Nagueh S. Systolic and diastolic dyssynchrony in patients with diastolic heart failure and the effect of medical therapy. J Am Coll Cardiol 2007;49:88-96.

    Article  Google Scholar 

  8. Romero-Farina G, Aguadé-Bruix S, Candell-Riera J, Pizzi MN, García-Dorado D. Cut-off values of myocardial perfusion gated-SPECT phase analysis parameters of normal subjects, and conduction and mechanical cardiac diseases. J Nucl Cardiol 2015;22:1247-58.

    Article  Google Scholar 

  9. Henneman MM, Chen J, Ypenburg C, Dibbets P, Bleeker GB, Boersma E, et al. Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol 2007;49:1708-14.

    Article  Google Scholar 

  10. Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374-81.

    Article  Google Scholar 

  11. Samad Z, Atchley AE, Trimble MA, Sun JL, Shaw LK, Pagnanelli R, et al. Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2011;18:24-30.

    Article  Google Scholar 

  12. Zafrir N, Bental T, Strasberg B, Solodky A, Mats I, Gutstein A, et al. Yield of left ventricular dyssynchrony by gated spect MPI in patients with heart failure prior to implantable cardioverter defibrillator or cardiac resynchronization therapy with a defibrillator: Characteristics and prediction of cardiac outcome. J Nucl Cardiol 2017;24:122-9.

    Article  Google Scholar 

  13. Goldberg AS, Alraies MC, Cerqueira MD, Jaber WA, Aljaroudi WA. Prognostic value of left ventricular mechanical dyssynchrony by phase analysis in patients with non-ischemic cardiomyopathy with ejection fraction 35-50% and QRS\150 ms. J Nucl Cardiol 2014;21:57-66.

    Article  Google Scholar 

  14. Uebleis C, Hellweger S, Laubender RP, Becker A, Shon HY, Lehner S, et al. Left ventricular dyssynchrony assessed by gated SPECT phase analysis in an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy. Eur J Nucl Med Mol Imaging 2012;39:1561-9.

    Article  Google Scholar 

  15. Aljaroudi W, Aggarwal H, Venkataraman R, Heo J, Iskandrian AE, Hage FG. Impact of left ventricular dyssynchrony by phase analysis on cardiovascular outcomes in patients with end-stage renal disease. J Nucl Cardiol 2010;17:1058-64.

    Article  Google Scholar 

  16. Aggarwal H, AlJaroudi WA, Mehta S, Mannon R, Heo J, Iskandrian AE, et al. The prognostic value of left ventricular mechanical dyssynchrony using gated myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol 2014;21:739-46.

    Article  Google Scholar 

  17. Mori H, Isobe S, Suzuki S, Unno K, Morimoto R, Kano N, et al. Prognostic value of left ventricular dyssynchrony evaluated by gated myocardial perfusion imaging in patients with chronic kidney disease and normal perfusion defect scores. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-017-0889-9.

    Article  Google Scholar 

  18. Martinez-Ramirez HR, Cortes-Sanabria L, Rojas-Campos E, Barragan G, Alfaro G, Hernandez M, et al. How frequently the clinical practice recommendations for nephropathy are achieved in patients with type 2 diabetes mellitus in a primary health-care setting? Rev Invest Clin 2008;60:217-26.

    Google Scholar 

  19. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010;33:2285-93.

    Article  Google Scholar 

  20. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010;376(9735):124-36.

    Article  Google Scholar 

  21. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.

    Article  Google Scholar 

  22. Lehrke M, Marx N. Diabetes mellitus and heart failure. Am J Med 2017;130:40-50.

    Article  Google Scholar 

  23. Bando YK, Murohara T. Diabetes-related heart failure. Circ J 2014;78:576-83.

    Article  CAS  Google Scholar 

  24. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol 1972;30:595-602.

    Article  CAS  Google Scholar 

  25. Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic cardiomyopathy: Current approach and potential diagnostic and therapeutic targets. J Diabetes Res 2017;1310265:1-7.

    Article  Google Scholar 

  26. Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2012;17:325-44.

    Article  Google Scholar 

  27. Berry C, Brett M, Stevenson K, McMurray JJ, Norrie J. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute heart failure. Heart 2008;94:296-304.

    Article  CAS  Google Scholar 

  28. Bader H, Garrigue S, Lafitte S, Reuter S, Jaïs P, Haïssaguerre M, et al. Intra-left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol 2004;43:248-56.

    Article  Google Scholar 

  29. Cho GY, Song JK, Park WJ, Han SW, Choi SH, Doo YC, et al. Mechanical dyssynchrony assessed by tissue Doppler imaging is a powerful predictor of mortality in congestive heart failure with normal QRS duration. J Am Coll Cardiol 2005;46:2237-43.

    Article  Google Scholar 

  30. Wolf P, Winhofer Y, Krssak M, Smajis S, Harreiter J, Kosi-Trebotic L, et al. Suppression of plasma free fatty acids reduces myocardial lipid content and systolic function in type 2 diabetes. Nutr Metab Cardiovasc Dis 2016;26:387-92.

    Article  CAS  Google Scholar 

  31. van der Leeuw J, Beulens W, van Dieren S, et al. Novel biomarkers to improve the prediction of cardiovascular event risk in type 2 diabetes mellitus. J Am Heart Assoc 2016;5:e003048.

    Google Scholar 

  32. Hida S, Chikamori T, Tanaka H, Igarashi Y, Shiba C, Usui Y, et al. Diagnostic value of left ventricular dyssynchrony after exercise and at rest in the detection of multivessel coronary artery disease on single-photon emission computed tomography. Circ J 2012;76:1942-52.

    Article  Google Scholar 

  33. Vigli de Kreutzenberg S, Fadini GP, Guzzinati S, Mazzucato M, Volpi A, Coracina A, et al. Carotid plaque calcification predicts future cardiovascular events in type 2 diabetes. Diabetes Care 2015;38:1937-44.

    Article  Google Scholar 

  34. Emanuele NV. Duration of diabetes, glucose control and cardiovascular risk. Diabetologia 2010;53:214-5.

    Article  CAS  Google Scholar 

  35. Noh M, Kwon H, Jung CH, Kwon SU, Kim MS, Lee WJ, et al. Impact of diabetes duration and degree of carotid artery stenosis on major adverse cardiovascular events: A single-center, retrospective, observational cohort study. Cardiovasc Diabetol 2017;16:74.

    Article  Google Scholar 

  36. Ramanathan RS. Correlation of duration, hypertension and glycemic control with microvascular complications of diabetes mellitus at a tertiary care hospital. Integr Mol Med 2017;4:2-4.

    Article  Google Scholar 

  37. Romero-Farina G. Aguade´-Bruix S. Analysis of ventricular synchrony: A complex puzzle. J Nucl Cardiol 2018. https://doi.org/10.1007/s12350-018-1252-5.

    Article  Google Scholar 

  38. Mukherjee A, Singh H, Patel C, Sharma G, Roy A, Naik N, et al. Normal values of cardiac mechanical synchrony parameters using gated myocardial perfusion single-photon emission computed tomography: Impact of population and study protocol. Indian J Nucl Med 2016;31:255-9.

    Article  Google Scholar 

  39. Malik D, Sood A, Parmar M, Mittal BR. Comparison of left ventricular phase parameters analysis between two software programs in patients with normal gated single-photon emission computed tomography-myocardial perfusion imaging. Indian J Nucl Med 2018;33:14-9.

    Google Scholar 

Download references

Disclosures

There is no potential conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Sood DNB.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, D., Mittal, B.R., Sood, A. et al. Prognostic value of left ventricular mechanical dyssynchrony indices in long-standing type II diabetes mellitus with normal perfusion and left ventricular systolic functions on SPECT-MPI. J. Nucl. Cardiol. 27, 1640–1648 (2020). https://doi.org/10.1007/s12350-018-1436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1436-z

Keywords

Navigation