Skip to main content
Log in

Serum uric acid in asymptomatic adults is weakly associated with carotid artery FDG uptake but not intima-media thickness

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

This study investigated the association of serum uric acid (UA) with carotid fluoro-2-deoxyglucose (FDG) uptake as a marker of inflammatory atherosclerosis.

Methods and results

In this cross-sectional retrospective study of 970 otherwise healthy adults, subjects in the greater serum UA quartiles had higher triglyceride (P < .001), lower high-density lipoprotein cholesterol (P < .05), and lower estimated GFR (P < .001). Mean and maximum Target-to-background ratios (TBRs) of carotid FDG uptake measured by positron emission tomography were significantly increased across greater serum UA quartiles (1.35 and 1.57 for Q1, 1.38 and 1.60 for Q2, 1.39 and 1.62 for Q3, and 1.39 and 1.61 for Q4; P = .001 and < .001). Carotid intima-media thickness was not different. Serum UA showed weak but significant correlations with estimated GFR (P < .001), and with mean (P < .001) and maximum carotid TBR (P = .004). Serum UA correlated with mean TBR in male (P = .008) and female subjects (P = .011), in high (≥ 70; P = .015) and low estimated GFR (< 70; P = .035), and in normotensive (P = .001) but not in hypertensive subjects.

Conclusions

Elevated serum UA in asymptomatic adults is associated with increased carotid FDG uptake, which suggests a potential role of UA in carotid inflammatory atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

UA:

Uric acid

PET:

Positron emission tomography

SUV:

Standard uptake value

HDL-C:

High-density lipoprotein cholesterol

hsCRP:

High-sensitive C-reactive protein

ROC:

Reactive oxygen species

FDG:

Fluoro-2-deoxyglucose

IMT:

Intima-media thickness

TBR:

Target-to-background

LDL-C:

Low-density lipoprotein cholesterol

GFR:

Glomerular filtration rate

References

  1. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008;359:1811-21.

    CAS  Google Scholar 

  2. Kivity S, Kopel E, Maor E, Abu-Bachar F, Segev S, Sidi Y, et al Association of serum uric acid and cardiovascular disease in healthy adults. Am J Cardiol 2013;111:1146-51.

    CAS  Google Scholar 

  3. Ishizaka N, Ishizaka Y, Toda E, Nagai R, Yamakado M. Association between serum uric acid, metabolic syndrome, and carotid atherosclerosis in Japanese individuals. Arterioscler Thromb Vasc Biol 2005;25:1038-44.

    CAS  Google Scholar 

  4. Li Q, Yang Z, Lu B, Wen J, Ye Z, Chen L, et al Serum uric acid level and its association with metabolic syndrome and carotid atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol 2011;10:72.

    CAS  Google Scholar 

  5. Takayama S, Kawamoto R, Kusunoki T, Abe M, Onji M. Uric acid is an independent risk factor for carotid atherosclerosis in a Japanese elderly population without metabolic syndrome. Cardiovasc Diabetol 2012;11:2.

    CAS  Google Scholar 

  6. Cicero AF, Salvi P, D’Addato S, Rosticci M, Borghi C. Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella Heart Study. J Hypertens 2014;32:57-64.

    CAS  Google Scholar 

  7. Iribarren C, Folsom AR, Eckfeldt JH, McGovern PG, Nieto FJ. Correlates of uric acid and its association with asymptomatic carotid atherosclerosis: the ARIC Study. Atherosclerosis Risk in Communities. Ann Epidemiol 1996;6:331-40.

    CAS  Google Scholar 

  8. Pan WH, Bai CH, Chen JR, Chiu HC. Associations between carotid atherosclerosis and high factor VIII activity, dyslipidemia, and hypertension. Stroke 1997;28:88-94.

    CAS  Google Scholar 

  9. De Pergola G, Cortese F, Termine G, Meliota G, Carbonara R, Masiello M, et al Uric acid, metabolic syndrome and atherosclerosis: the chicken or the egg, which comes first? Endocr Metab Immune Disord Drug Targets 2018;18:251-9.

    Google Scholar 

  10. Li LX, Dong XH, Li MF, Zhang R, Li TT, Shen J, et al Serum uric acid levels are associated with hypertension and metabolic syndrome but not atherosclerosis in Chinese inpatients with type 2 diabetes. J Hypertens 2015;33:482-90.

    Google Scholar 

  11. Bae JS, Shin DH, Park PS, Choi BY, Kim MK, Shin MH, et al The impact of serum uric acid level on arterial stiffness and carotid atherosclerosis: the Korean Multi-Rural Communities Cohort study. Atherosclerosis 2013;231:145-51.

    CAS  Google Scholar 

  12. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340:115-26.

    CAS  Google Scholar 

  13. Lusis AJ. Atherosclerosis. Nature 2000;407:233-41.

    CAS  Google Scholar 

  14. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 2003;108:1772-8.

    Google Scholar 

  15. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.

    CAS  Google Scholar 

  16. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245-50.

    CAS  Google Scholar 

  17. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-d-glucose positron emission tomography. J Am Coll Cardiol 2011;58:603-14.

    CAS  Google Scholar 

  18. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.

    Google Scholar 

  19. Joshi F, Rosenbaum D, Bordes S, Rudd JH. Vascular imaging with positron emission tomography. J Intern Med 2011;270:99-109.

    CAS  Google Scholar 

  20. Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007;49:1533-9.

    CAS  Google Scholar 

  21. Wasselius J, Larsson S, Sundin A, Jacobsson H. Assessment of inactive, active and mixed atherosclerotic plaques by 18F-FDG-PET; an age group-based correlation with cardiovascular risk factors. Int J Cardiovasc Imaging 2009;25:133-40.

    Google Scholar 

  22. Lee SJ, On YK, Lee EJ, Choi JY, Kim BT, Lee KH. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 2008;49(8):1277-82.

    CAS  Google Scholar 

  23. Noh TS, Yoo J, Kim SW, Lee EJ, Choi JY, Kim BT, et al Effects of coverage extent and slice skipping on mean and maximum arterial 18F-FDG uptake ratios in patients with carotid plaque. Ann Nucl Med 2012;26:715-22.

    Google Scholar 

  24. Ide M, Suzuki Y. Is whole-body FDG-PET valuable for health screening? For Eur J Nucl Med Mol Imaging 2005;32:339-41.

    Google Scholar 

  25. Chen YK, Ding HJ, Su CT, Shen YY, Chen LK, Liao AC, et al Application of PET and PET/CT imaging for cancer screening. Anticancer Res 2004;24:4103-8.

    Google Scholar 

  26. Schöder H, Gönen M. Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med 2007;48:S4S-18S.

    Google Scholar 

  27. Rathman W, Funkhouser E, Dyer AR, Roseman JM. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary artery risk development in young adults. Ann Epidemiol 1998;8:250-61.

    Google Scholar 

  28. Yang T, Chu CH, Bai CH, You SL, Chou YC, Chou WY, et al Uric acid level as a risk marker for metabolic syndrome: a Chinese cohort study. Atherosclerosis. 2012;220:525-31.

    CAS  Google Scholar 

  29. Zhang Z, Bian L, Choi Y. Serum uric acid: a marker of metabolic syndrome and subclinical atherosclerosis in Korean men. Angiology 2012;63:420-8.

    CAS  Google Scholar 

  30. Giacomello A, Di Sciascio N, Quaratino CP. Relation between serum triglyceride level, serum urate concentration, and fractional urate excretion. Metabolism 1997;46:1085-9.

    CAS  Google Scholar 

  31. Baldwin W, McRae S, Marek G, Wymer D, Pannu V, Baylis C, et al Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes 2011;60:1258-69.

    CAS  Google Scholar 

  32. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 2008;26:269-75.

    CAS  Google Scholar 

  33. Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, et al Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998;29:1625-30.

    CAS  Google Scholar 

  34. Mauriello A, Sangiorgi G, Fratoni S, Palmieri G, Bonanno E, Anemona L, et al Diffuse and active inflammation occurs in both vulnerable and stable plaques of the entire coronary tree: a histopathologic study of patients dying of acute myocardial infarction. J Am Coll Cardiol 2005;45:1585-93.

    Google Scholar 

  35. Lee SJ, Thien Quach CH, Jung KH, Paik JY, Lee JH, Park JW, Lee KH. Oxidized low-density lipoprotein stimulates macrophage 18F-FDG uptake via hypoxia-inducible factor-1α activation through Nox2-dependent reactive oxygen species generation. J Nucl Med 2014;55:1699-705.

    CAS  Google Scholar 

  36. So A, Thorens B. Uric acid transport and disease. J Clin Invest 2010;120:1791-9.

    CAS  Google Scholar 

  37. Kushiyama A, Okubo H, Sakoda H, Kikuchi T, Fujishiro M, Sato H, et al  Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arterioscler Thromb Vasc Biol 2012;32:291-8.

    CAS  Google Scholar 

  38. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 1999;131:7-13.

    CAS  Google Scholar 

  39. Moriarity JT, Folsom AR, Iribarren C, Nieto FJ, Rosamond WD. Serum uric acid and risk of coronary heart disease: Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol 2000;10:136-43.

    CAS  Google Scholar 

  40. Panero F, Gruden G, Perotto M, Fornengo P, Barutta F, Greco E, et al Uric acid is not an independent predictor of cardiovascular mortality in type 2 diabetes: a population-based study. Atherosclerosis 2012;221:183-8.

    CAS  Google Scholar 

  41. Ford ES. Uric acid and mortality from all-causes and cardiovascular disease among adults with and without diagnosed diabetes: findings from the National Health and Nutrition Examination Survey III Linked Mortality Study. Diabetes Res Clin Pract 2011;93:e84-6.

    Google Scholar 

  42. Rich MW. Uric acid: is it a risk factor for cardiovascular disease. Am J Cardiol 2000;85:1018-21.

    CAS  Google Scholar 

  43. Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, et al Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS ONE 2014;9:e114259.

    Google Scholar 

  44. Sundström J, Sullivan L, D’Agostino RB, Levy D, Kannel WB, Vasan RS. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 2005;45:28-33.

    Google Scholar 

  45. Kuwabara M, Hisatome I, Niwa K, Hara S, Roncal-Jimenez CA, Bjornstad P, et al Uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-year Japanese Cohort Study. Hypertension 2018;71:78-86.

    CAS  Google Scholar 

  46. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, et al Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001;38:1101-6.

    CAS  Google Scholar 

Download references

Author Contributions

Y.-S.C. and K.-H.L. designed the study, interpreted the data and wrote the paper; J.-H.B. and S.-H.H. were actively involved in collecting the data; Y.-S.C. and S.-W.M. participated in data analysis; J.-Y.C. and B.-T.K. provided statistical and conceptual advice. All authors gave final approval of the manuscript for submission.

Disclosures

Y.-S.C., K.-H.L., J.-H.B, S.-H.H., S.-W.M., J.-Y.C., and B.-T.K. have nothing to disclose. All authors are affiliated with Samsung Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Han Lee MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 15266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y.S., Bae, J.H., Moon, S.H. et al. Serum uric acid in asymptomatic adults is weakly associated with carotid artery FDG uptake but not intima-media thickness. J. Nucl. Cardiol. 27, 1537–1546 (2020). https://doi.org/10.1007/s12350-018-1424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1424-3

Keywords

Navigation