Skip to main content

Advertisement

Log in

Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The aim of this study was to prospectively quantify the rate of myocardial glucose uptake (MRGlu) in myocardium with different perfusion-metabolism patterns and determine its prognostic value in patients with ischemic cardiomyopathy.

Methods and Results

79 patients with ischemic cardiomyopathy were prospectively enrolled for dynamic cardiac FDG PET, and then followed for at least 6 months. Perfusion-metabolism patterns were determined based on visual score analysis of 201Tl SPECT and FDG PET. MRGlu was analyzed using the Patlak kinetic model. The primary end-point was cardiovascular mortality. Significantly higher MRGlu was observed in viable compared with non-viable areas. Negative correlations were found between MRGlu in transmural match and a history of hyperlipidemia, statin usage, and triglyceride levels. Diabetic patients receiving dipeptidyl peptidase-4 inhibitors (DPP4i) had a significantly lower MRGlu in transmural match, mismatch, and reverse mismatch. Patients with MRGlu in transmural match ≥ 23.40 or reverse mismatch ≥ 36.90 had a worse outcome.

Conclusions

Myocardial glucose utilization was influenced by substrates and medications, including statins and DPP4i. MRGlu could discriminate between viable and non-viable myocardium, and MRGlu in transmural match and reverse mismatch may be prognostic predictors of cardiovascular death in patients with ischemic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

18F-FDG:

18F-fluorodeoxyglucose

PET:

Positron emission tomography

201Tl SPECT:

201Tl single photon emission computed tomography

ECG:

Electrocardiogram

LV:

Left ventricular

EF:

Ejection fraction

FA:

Fatty acid

HF:

Heart failure

CAD:

Coronary artery disease

CV:

Cardiovascular

References

  1. Matsunari I, Taki J, Nakajima K, Tonami N, Hisada K. Myocardial viability assessment using nuclear imaging. Ann Nucl Med 2003;17:169-79.

    CAS  PubMed  Google Scholar 

  2. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 1991;32:565-78.

    CAS  PubMed  Google Scholar 

  3. Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH, et al. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1997;24:35-41.

    CAS  PubMed  Google Scholar 

  4. Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: What does it mean? J Nucl Med 1999;40:1499-502.

    CAS  PubMed  Google Scholar 

  5. Hamana K, Akiba T, Uchino F, Matsuzaki S. Distribution of spermine in bacilli and lactic acid bacteria. Can J Microbiol 1989;35:450-5.

    CAS  PubMed  Google Scholar 

  6. Ha AC, Renaud JM, Dekemp RA, Thorn S, Dasilva J, Garrard L, et al. In vivo assessment of myocardial glucose uptake by positron emission tomography in adults with the PRKAG2 cardiac syndrome. Circ Cardiovasc Imaging 2009;2:485-91.

    PubMed  Google Scholar 

  7. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 1980;186:701-11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 2004;95:135-45.

    CAS  PubMed  Google Scholar 

  9. Beadle RM, Frenneaux M. Modification of myocardial substrate utilisation: A new therapeutic paradigm in cardiovascular disease. Heart 2010;96:824-30.

    CAS  PubMed  Google Scholar 

  10. Christopher BA, Huang HM, Berthiaume JM, McElfresh TA, Chen X, Croniger CM, et al. Myocardial insulin resistance induced by high fat feeding in heart failure is associated with preserved contractile function. Am J Physiol Heart Circ Physiol 2010;299:H1917-27.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Labbe SM, Grenier-Larouche T, Noll C, Phoenix S, Guerin B, Turcotte EE, et al. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes 2012;61:2701-10.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996;97:2859-65.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation 2004;110:894-6.

    PubMed  Google Scholar 

  14. Kaplan A, Abidi E, El-Yazbi A, Eid A, Booz GW, Zouein FA. Direct cardiovascular impact of SGLT2 inhibitors: Mechanisms and effects. Heart Fail Rev 2018. https://doi.org/10.1007/s10741-017-9665-9.

    Article  PubMed  Google Scholar 

  15. Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes 2017;66:1030-40.

    CAS  PubMed  Google Scholar 

  16. Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: Recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015;116:1491-504.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Scheen AJ. Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ Res 2018;122:1439-59.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017;136:e137-61.

    PubMed  Google Scholar 

  19. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18:891-975.

    PubMed  Google Scholar 

  20. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 2017;70:2476-86.

    PubMed  Google Scholar 

  21. Wang CC, Chang HY, Yin WH, Wu YW, Chu PH, Wu CC, et al. TSOC-HFrEF registry: A registry of hospitalized patients with decompensated systolic heart failure: Description of population and management. Acta Cardiol Sin 2016;32:400-11.

    PubMed  PubMed Central  Google Scholar 

  22. Chang HY, Wang CC, Wu YW, Chu PH, Wu CC, Hsu CH, et al. One-year outcomes of acute decompensated systolic heart failure in Taiwan: Lessons from TSOC-HFrEF registry. Acta Cardiol Sin 2017;33:127-38.

    PubMed  PubMed Central  Google Scholar 

  23. Tsai SY, Wang SY, Shiau YC, Wu YW. Mechanical dyssynchrony and diastolic dysfunction are common in LVH: a pilot correlation study using Doppler echocardiography and CZT gated-SPECT MPI. Sci Rep 2018;8:4182.

    PubMed  PubMed Central  Google Scholar 

  24. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.

    PubMed  PubMed Central  Google Scholar 

  25. Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images. J Nucl Cardiol 2015;22:308-18.

    PubMed  Google Scholar 

  26. Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13:e121-51.

    PubMed  Google Scholar 

  27. Schoder H, Campisi R, Ohtake T, Hoh CK, Moon DH, Czernin J, et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 1999;33:1328-37.

    CAS  PubMed  Google Scholar 

  28. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187-226.

    PubMed  Google Scholar 

  29. Underwood SR, Bax JJ, vom Dahl J, Henein MY, Knuuti J, van Rossum AC, et al. Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology. Eur Heart J 2004;25:815-36.

    PubMed  Google Scholar 

  30. Maki M, Luotolahti M, Nuutila P, Iida H, Voipio-Pulkki LM, Ruotsalainen U, et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation 1996;93:1658-66.

    CAS  PubMed  Google Scholar 

  31. Brosius FC 3rd, Liu Y, Nguyen N, Sun D, Bartlett J, Schwaiger M. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J Mol Cell Cardiol 1997;29:1675-85.

    CAS  PubMed  Google Scholar 

  32. Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, et al. Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 2004;95:433-40.

    CAS  PubMed  Google Scholar 

  33. Zhang X, Schindler TH, Prior JO, Sayre J, Dahlbom M, Huang SC, et al. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging 2013;40:532-41.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: Part I: General concepts. Circulation 2002;105:1727-33.

    CAS  PubMed  Google Scholar 

  35. Coort SL, Bonen A, van der Vusse GJ, Glatz JF, Luiken JJ. Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: Role of sarcolemmal substrate transporters. Mol Cell Biochem 2007;299:5-18.

    CAS  PubMed  Google Scholar 

  36. Shoghi KI, Gropler RJ, Sharp T, Herrero P, Fettig N, Su Y, et al. Time course of alterations in myocardial glucose utilization in the Zucker diabetic fatty rat with correlation to gene expression of glucose transporters: A small-animal PET investigation. J Nucl Med 2008;49:1320-7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Menard SL, Croteau E, Sarrhini O, Gelinas R, Brassard P, Ouellet R, et al. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 2010;298:E1049-57.

    CAS  PubMed  Google Scholar 

  38. Menard SL, Ci X, Frisch F, Normand-Lauziere F, Cadorette J, Ouellet R, et al. Mechanism of reduced myocardial glucose utilization during acute hypertriglyceridemia in rats. Mol Imaging Biol 2009;11:6-14.

    PubMed  Google Scholar 

  39. White WB, Baker WL. Cardiovascular effects of incretin-based therapies. Annu Rev Med 2016;67:245-60.

    CAS  PubMed  Google Scholar 

  40. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007;132:2131-57.

    CAS  PubMed  Google Scholar 

  41. de Boer SA, Heerspink HJ, Lefrandt JD, Hovinga-de Boer MC, van Roon AM, Orozco LEJ, et al. Effect of linagliptin on arterial (18)F-fluorodeoxyglucose positron emission tomography uptake: A randomized controlled trial (RELEASE). J Am Coll Cardiol 2017;69:1097-8.

    PubMed  Google Scholar 

  42. Vest AR. Incretin-related drug therapy in heart failure. Curr Heart Fail Rep 2015;12:24-32.

    CAS  PubMed  Google Scholar 

  43. Nauck MA, Meier JJ, Cavender MA, El Aziz MA, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 2017;136:849-70.

    CAS  PubMed  Google Scholar 

  44. Kofoed KF, Carstensen S, Hove JD, Freiberg J, Bangsgaard R, Holm S, et al. Low whole-body insulin sensitivity in patients with ischaemic heart disease is associated with impaired myocardial glucose uptake predictive of poor outcome after revascularisation. Eur J Nucl Med Mol Imaging 2002;29:991-8.

    CAS  PubMed  Google Scholar 

  45. Lin H, Angeli M, Chung KJ, Ejimadu C, Rosa AR, Lee T. sFRP2 activates Wnt/beta-catenin signaling in cardiac fibroblasts: Differential roles in cell growth, energy metabolism, and extracellular matrix remodeling. Am J Physiol Cell Physiol 2016;311:C710-9.

    PubMed  PubMed Central  Google Scholar 

  46. Higgins DP, Hemsley S, Canfield PJ. Association of uterine and salpingeal fibrosis with chlamydial hsp60 and hsp10 antigen-specific antibodies in Chlamydia-infected koalas. Clin Diagn Lab Immunol 2005;12:632-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 2012;5:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Feola M, Biggi A, Chauvie S, Vado A, Leonardi G, Rolfo F, et al. Myocardial scar and insulin resistance predict cardiovascular events in severe ischaemic myocardial dysfunction: A perfusion-metabolism positron emission tomography study. Nucl Med Commun 2008;29:448-54.

    CAS  PubMed  Google Scholar 

  49. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. J Am Coll Cardiol 2002;39:1151-8.

    PubMed  Google Scholar 

  50. Desideri A, Cortigiani L, Christen AI, Coscarelli S, Gregori D, Zanco P, et al. The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 2005;46:1264-9.

    PubMed  Google Scholar 

  51. Kofoed KF, Schoder H, Knight RJ, Buxton DB. Glucose metabolism in reperfused myocardium measured by [2-18F] 2-fluorodeoxyglucose and PET. Cardiovasc Res 2000;45:321-9.

    CAS  PubMed  Google Scholar 

  52. Perrone-Filardi P, Bacharach SL, Dilsizian V, Marin-Neto JA, Maurea S, Arrighi JA, et al. Clinical significance of reduced regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:608-16.

    CAS  PubMed  Google Scholar 

  53. Anselm DD, Anselm AH, Renaud J, Atkins HL, de Kemp R, Burwash IG, et al. Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J Nucl Cardiol 2011;18:657-67.

    PubMed  Google Scholar 

  54. Mesotten L, Maes A, Herregods MC, Desmet W, Nuyts J, Van de Werf F, et al. PET “reversed mismatch pattern” early after acute myocardial infarction: Follow-up of flow, metabolism and function. Eur J Nucl Med 2001;28:466-71.

    CAS  PubMed  Google Scholar 

  55. Fukuoka Y, Nakano A, Uzui H, Amaya N, Ishida K, Arakawa K, et al. Reverse blood flow-glucose metabolism mismatch indicates preserved oxygen metabolism in patients with revascularised myocardial infarction. Eur J Nucl Med Mol Imaging 2013;40:1155-62.

    CAS  PubMed  Google Scholar 

  56. Yamagishi H, Akioka K, Hirata K, Sakanoue Y, Takeuchi K, Yoshikawa J, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40:1492-8.

    CAS  PubMed  Google Scholar 

  57. Fallavollita JA, Luisi AJ Jr, Yun E, de Kemp RA, Canty JM Jr. An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol 2010;17:637-45.

    PubMed  PubMed Central  Google Scholar 

  58. Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255-62.

    CAS  PubMed  Google Scholar 

  59. Voipio-Pulkki LM, Nuutila P, Knuuti MJ, Ruotsalainen U, Haaparanta M, Teras M, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med 1993;34:2064-7.

    CAS  PubMed  Google Scholar 

  60. Ohtake T, Yokoyama I, Watanabe T, Momose T, Serezawa T, Nishikawa J, et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995;36:456-63.

    CAS  PubMed  Google Scholar 

  61. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730-6.

    CAS  PubMed  Google Scholar 

  62. Chiang CE, Lin SY, Lin TH, Wang TD, Yeh HI, Chen JF, et al. 2018 consensus of the Taiwan Society of Cardiology and the Diabetes Association of Republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases. J Chin Med Assoc 2018. https://doi.org/10.1016/j.jcma.2018.01.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Ya-Huang Chen, Ms. Chia-Wen Lai, Mr. Chao-Chun Huang and Mr. Po-Wei Li for dynamic PET acquisition, and Ms. Yu-Shuan Hung, Dr Szu-Ying Tsai, and Mr. Chien-Yu Chu for their assistance in PET analyses and clinical data collection.

Disclosure

All authors declare that they have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Wen Wu MD, PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

This study was supported by the Ministry of Science and Technology of Taiwan (MOST 101-2314-B-418-012-MY3, 104-2314-B-418-008; 105-2628-B-418-002-MY2) and mutual found from Far Eastern Memorial Hospital (FEMH 101-2314-B-418-012-MY3, 104-2314-B-418-008; 105-2628-B-418-002-MY2).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, KY., Wang, SY., Yen, RF. et al. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy. J. Nucl. Cardiol. 27, 269–279 (2020). https://doi.org/10.1007/s12350-018-1395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1395-4

Keywords

Navigation