18F-fluorodeoxyglucose use after cardiac transplant: A comparative study of suppression of physiological myocardial uptake

  • Renata Christian Martins Felix
  • Clécio Maria Gouvea
  • Christiane Cigagna Wiefels Reis
  • Jacqueline Sampaio dos Santos Miranda
  • Ligia Beatriz Chaves Espinoso Schtruk
  • Alexandre Siciliano Colafranceschi
  • Cláudio Tinoco Mesquita
Original Article



18F-fluorodeoxyglucose (FDG) has been useful in the evaluation of myocardial inflammatory processes. However, it is challenging to identify them due to physiological 18F-FDG uptake. There are no publications demonstrating the application of FDG in post-transplant rejection in humans yet. The aim of this study is to determine the feasibility of suppression of myocardial FDG uptake in post-transplant patients, comparing three different protocols of preparation.


Ten patients after heart transplantation were imaged by FDG associated with three endomyocardial biopsies (EMB), scheduled in the first year after the procedure. Before each imaging, patients were randomized to one of three preparations: (1) hyperlipidic-hypoglycemic diet; (2) fasting longer than 12 hours; and (3) fasting associated with intravenous heparin. All patients would undergo the three methods. FDG images were analyzed using visual analysis scores and relative radiotracer cardiac uptake (RRCU).


The suppression rate of radiotracer activity ranged from 55% to 62%. Visual analysis showed that preparation 3 presented less efficacy in the suppression compared to the others. However, RRCU did not show difference between the preparations.


Suppression of physiological myocardial FDG uptake after cardiac transplantation is feasible. The usefulness of heparin in the suppression is unclear.


Heart transplant PET 18F-FDG myocardial uptake 



Positron emission tomography/computed tomography




Endomyocardial biopsy


Single-photon emission computerized tomography/computed tomography






Region of interest




Computed tomography attenuation correction



Acknowledgement of Grant support: National Institute of Cardiology, Brazil.


The authors have indicated that they have no financial conflict of interest.

Supplementary material

12350_2018_1309_MOESM1_ESM.pptx (2.7 mb)
Supplementary material 1 (PPTX 2736 kb)


  1. 1.
    Ishida Y, Yoshinaga K, Miyagawa M, Moroi M, Kondoh C, Kiso K, Kumita S. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28(4):393–403.CrossRefPubMedGoogle Scholar
  2. 2.
    de Groot M, Meeuwis AP, Kok PJ, Corstens FH, Oyen WJ. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut. Eur J Nucl Med Mol Imaging. 2005;32:98–101.CrossRefPubMedGoogle Scholar
  3. 3.
    Tang R, Wang JTY, Wang L, et al. Impact of Patient preparation on the diagnostic performance of 18F-FDG PET in cardiac sarcoidosis: A systematic review and meta-analysis. Clin Nucl Med. 2016;41:e327–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller S, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med. 2017;58(8):1341–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Hunt SA, Haddad F. The changing face of heart transplantation. J Am Coll Cardiol. 2008;52:587–98.CrossRefPubMedGoogle Scholar
  6. 6.
    Daly KP, Dearling JL, Seto T, Dunning P, Fahey F, Packard AB, Briscoe DM. Use of [18F]FDG positron emission tomography to monitor the development of cardiac allograft rejection. Transplantation. 2015;99(9):e132–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rechavia E, De Silva R, Kushwaha SS, et al. Enhanced myocardial 18F-2-fluoro-2-deoxyglucose uptake after orthotopic heart transplantation assessed by positron emission tomography. J Am Coll Cardiol. 1997;30:533–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Harisankar CNB, Mittal BR, Agrawal KL, et al. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18:926–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Soussan M, Brillet PY, Nunes H, et al. Clinical value of a high-fat and lowcarbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20:120–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Minamimoto R, Morooka M, Kubota K, et al. Value of FDG-PET/CT using unfractionated heparin for managing primary cardiac lymphoma and several key findings. J Nucl Cardiol. 2011;18:516–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Balink H, Hut E, Pol T, et al. Suppression of 18F-FDG myocardial uptake using a fat-allowed, carbohydrate-restricted diet. J Nucl Med Technol. 2011;39:185–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24(11):1710–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Williams G, Kolodny GM. AJR suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am J Roentgenol. 2008;190(2):W151–6.CrossRefGoogle Scholar
  14. 14.
    Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. J Am Coll Cardiol Img. 2010;3:388–97.CrossRefGoogle Scholar
  15. 15.
    Demeure F, Hanin FX, Bol A, Vincent MF, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: Implications for vulnerable coronary plaque imaging. J Nucl Med. 2014;55:1629–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Kobayashi Y, Kumita S, Fukushima Y, et al. Significant suppression of myocardial (18)F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol. 2013;62(5):314–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee HY, Nam HY, Shin SK. Comparison of myocardial F-18 FDG uptake between overnight and non-overnight fasting in non-diabetic healthy subjects. Jpn J Radiol. 2015;33:385–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Manabe O, Yoshinaga K, Ohira H, Masuda A, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23:244–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Lu Y, Grant C, Xie K, Sweiss NJ. Suppression of myocardial 18F-FDG uptake through prolonged high-fat, high-protein, and very-low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. Clin Nucl Med. 2017;42:88–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng J, Chen Y, Chen S, et al. Measurement of standard uptake value in dual-head coincidence system. Bio-Med Mater Eng. 2007;17:219–27.Google Scholar
  22. 22.
    Flotats A, Carrió I, Agostini D, et al. Proposal for standardization of 123I- metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Van Berkel A, Rao JU, Lenders JWM, et al. Semiquantitative 123I-metaiodobenzylguanidine scintigraphy to distinguish pheochromocytoma and paraganglioma from physiologic adrenal uptake and its correlation with genotype-dependent expression of catecholamine transporters. J Nucl Med. 2015;56:839–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Fujita S, Nagamachi S, Umemura Y, et al. Usability of the heparin appositional whole body FDG PET—new methods to reduce cardiac physiological accumulation. Eur J Nucl Med Mol Imaging. 2011;38:S359.Google Scholar
  25. 25.
    Tory R, Sachs-Barrable K, Hill JS, Wasan KM. Cyclosporine A and rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma. Int J Pharm. 2008;358(1–2):219–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Gormsen LC, Christensen NL, Bendstrup E, Tolbod LP, Nielsen SS. Complete somatostatin-induced insulin suppression combined with heparin loading does not significantly suppress myocardial 18F-FDG uptake in patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20:1108–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Badano LP, Miglioranza MH, Edvardsen T, et al. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging. 2015;9:919–48.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Renata Christian Martins Felix
    • 1
  • Clécio Maria Gouvea
    • 2
  • Christiane Cigagna Wiefels Reis
    • 2
  • Jacqueline Sampaio dos Santos Miranda
    • 2
  • Ligia Beatriz Chaves Espinoso Schtruk
    • 2
  • Alexandre Siciliano Colafranceschi
    • 2
  • Cláudio Tinoco Mesquita
    • 1
  1. 1.Federal Fluminense UniversityNiteróiBrazil
  2. 2.National Institute of CardiologyRio de JaneiroBrazil

Personalised recommendations