Advertisement

Coronary circulation: Pressure/flow parameters for assessment of ischemic heart disease

  • Henry Gewirtz
Review Article

Abstract

Both invasive and non-invasive parameters have been reported for assessment of the physiological status of the coronary circulation. Fractional flow reserve and coronary (or myocardial) flow reserve may be obtained by invasive or non-invasive means. These metrics of coronary stenosis severity have achieved wide clinical acceptance for guiding revascularization decisions and risk stratification. Other indices are obtained invasively (e.g., instantaneous wave-free ratio, iFR; hyperemic stenosis resistance) or non-invasively (e.g., PET absolute myocardial blood flow (mL/min/g)) and have been used for the same purposes. Both iFR, and whole-cycle distal coronary to aortic mean pressure (Pd/Pa) are measured under basal condition and used for assessment of hemodynamic stenosis severity as is index of basal stenosis resistance (BSR). These metrics typically are dichotomized at an empirically derived cut point into “normal” and “abnormal” categories for purposes of clinical decision making and data analysis. Once dichotomized the indices do not always point in the same direction and so confusion may arise. This review, therefore, will present basic principles relevant to understanding commonly employed metrics of the physiological status of the coronary circulation, potential strengths and weaknesses, and hopefully an improved appreciation of the clinical information provided by each.

Keywords

Physiology of myocardial/coronary perfusion Basic science, CAD Diseases/processes, myocardial ischemia and infarction Diseases/processes, PET Modalities, FFR: fractional flow reserve Modalities, Myocardial blood flow Tests 

Abbreviations

Pa

Mean aortic pressure

Pd

Mean pressure distal to coronary stenosis

CBF

Coronary blood flow

MBF

Myocardial blood flow

CBF

Thermodilution mean transit time (Tm ≃ k/CBF) or Doppler flow velocity (cm/s)

MBF

PET (provides MBF as mL/min/g)

CCTA

Coronary computed tomographic angiography

CFR and MFR

Coronary or myocardial flow reserve: CBF or MBF with coronary vasodilator (e.g., adenosine)/CBF or MBF at rest. Defined as absolute flow reserve (see text) and differs from relative flow reserve (e.g., FFR and FFRpet)

FFR

Fractional flow reserve: Pd/Pa. Obtained with coronary vasodilator stimulus. Considered relative flow reserve (see text)

FFRct

FFR computed from modeled hyperemic pressure/flow CCTA data. CCTA obtained at rest

FFRpet

MBF stenotic coronary artery/MBF normal coronary artery. Obtained with coronary vasodilator stimulus requires normal reference artery

iFR

Instantaneous wave-free ratio (Figure 2). Pd/Pa. Obtained at rest pressures measured during wave-free interval in mid to late diastole

BSR

Basal stenosis resistance (CBF at rest). Pa − Pd/CBF

HSR

Hyperemic stenosis resistance (CBF with coronary vasodilator). Pa − Pd/CBF

IMR

Index of microvascular resistance (CBF with coronary vasodilator). Pd/CBF

Notes

Disclosure

H. Gewirtz has nothing to disclose.

Supplementary material

12350_2018_1270_MOESM1_ESM.pptx (775 kb)
Supplementary material 1 (PPTX 776 kb)

References

  1. 1.
    Danad I, Szymonifka J, Schulman-Marcus J, Min JK. Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging 2016;17:836-44.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 2010;38:3195-209.CrossRefPubMedGoogle Scholar
  3. 3.
    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012;308:1237-45.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, De Bruyne B. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 2010;56:177-84.CrossRefPubMedGoogle Scholar
  5. 5.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.CrossRefPubMedGoogle Scholar
  6. 6.
    Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010;55:2816-21.CrossRefPubMedGoogle Scholar
  7. 7.
    Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, Bhindi R, Lehman SJ, Walters D, Sapontis J, Janssens L, Vrints CJ, Khashaba A, Laine M, Van Belle E, Krackhardt F, Bojara W, Going O, Harle T, Indolfi C, Niccoli G, Ribichini F, Tanaka N, Yokoi H, Takashima H, Kikuta Y, Erglis A, Vinhas H, Canas Silva P, Baptista SB, Alghamdi A, Hellig F, Koo BK, Nam CW, Shin ES, Doh JH, Brugaletta S, Alegria-Barrero E, Meuwissen M, Piek JJ, van Royen N, Sezer M, Di Mario C, Gerber RT, Malik IS, Sharp ASP, Talwar S, Tang K, Samady H, Altman J, Seto AH, Singh J, Jeremias A, Matsuo H, Kharbanda RK, Patel MR, Serruys P, Escaned J. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 2017;376:1824-34.CrossRefPubMedGoogle Scholar
  8. 8.
    Gotberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, Olsson SE, Ohagen P, Olsson H, Omerovic E, Calais F, Lindroos P, Maeng M, Todt T, Venetsanos D, James SK, Karegren A, Nilsson M, Carlsson J, Hauer D, Jensen J, Karlsson AC, Panayi G, Erlinge D, Frobert O. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017;376:1813-23.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee JM, Park J, Hwang D, Kim CH, Choi KH, Rhee TM, Tong Y, Park JJ, Shin ES, Nam CW, Doh JH, Koo BK. Similarity and difference of resting distal to aortic coronary pressure and instantaneous wave-free ratio. J Am Coll Cardiol 2017;70:2114-23.CrossRefPubMedGoogle Scholar
  10. 10.
    Kern MJ, Seto AH. Agreement and differences among resting coronary physiological indices: Are all things equal? J Am Coll Cardiol 2017;70:2124-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Gould KL, Johnson NP. Physiologic severity of diffuse coronary artery disease: Hidden high risk. Circulation 2015;131:4-6.CrossRefPubMedGoogle Scholar
  12. 12.
    De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, Gould KL, Wijns W. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “Normal” coronary angiography. Circulation 2001;104:2401-6.CrossRefPubMedGoogle Scholar
  13. 13.
    Seiler C. The human coronary collateral circulation. Heart 2003;89:1352-7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: Theoretical basis and animal validation. Circulation 2000;101:1840-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Logan SE. On the fluid mechanics of human coronary artery stenosis. IEEE Trans Biomed Eng 1975;22:327-34.CrossRefPubMedGoogle Scholar
  16. 16.
    Young DF, Cholvin NR, Roth AC. Pressure drop across artificially induced stenosis in the femoral artery of dogs. Circ Res 1975;36:735-43.CrossRefPubMedGoogle Scholar
  17. 17.
    Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 1978;43:242-53.CrossRefPubMedGoogle Scholar
  18. 18.
    De Bruyne B, Pijls NH, Bartunek J, Kulecki K, Bech JW, De Winter H, Van Crombrugge P, Heyndrickx GR, Wijns W. Fractional flow reserve in patients with prior myocardial infarction. Circulation 2001;104:157-62.CrossRefPubMedGoogle Scholar
  19. 19.
    Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993;87:1354-67.CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson NP, Gould KL. Fractional flow reserve returns to its origins: Quantitative cardiac positron emission tomography. Circ Cardiovasc Imaging 2016;9:e005435.CrossRefPubMedGoogle Scholar
  21. 21.
    van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SA, Voskuil M, Henriques JP, Koch KT, de Winter RJ, Spaan JA, Siebes M, Tijssen JG, Meuwissen M, Piek JJ. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv 2014;7:301-11.CrossRefPubMedGoogle Scholar
  22. 22.
    Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging 2012;5:193-202.CrossRefPubMedGoogle Scholar
  23. 23.
    Aarnoudse W, Van’t Veer M, Pijls NH, Ter Woorst J, Vercauteren S, Tonino P, Geven M, Rutten M, van Hagen E, de Bruyne B, van de Vosse F. Direct volumetric blood flow measurement in coronary arteries by thermodilution. J Am Coll Cardiol 2007;50:2294-304.CrossRefPubMedGoogle Scholar
  24. 24.
    Gewirtz H. Fractional flow reserve [letter; comment]. Circulation 1996;94:2306-7.PubMedGoogle Scholar
  25. 25.
    Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA. Influence of hemodynamic conditions on fractional flow reserve: Parametric analysis of underlying model. Am J Physiol Heart Circ Physiol 2002;283:H1462-70.CrossRefPubMedGoogle Scholar
  26. 26.
    Gould KL, Johnson NP, Kaul S, Kirkeeide RL, Mintz GS, Rentrop KP, Sdringola S, Virmani R, Narula J. Patient selection for elective revascularization to reduce myocardial infarction and mortality: New lessons from randomized trials, coronary physiology, and statistics. Circ Cardiovasc Imaging 2015;8:e003099.CrossRefPubMedGoogle Scholar
  27. 27.
    Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: Results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 2011;59:1392-402.CrossRefPubMedGoogle Scholar
  28. 28.
    Sen S, Nijjer S, Petraco R, Malik IS, Francis DP, Davies J. Instantaneous wave-free ratio: Numerically different, but diagnostically superior to FFR? Is lower always better? J Am Coll Cardiol 2013;62:566.CrossRefPubMedGoogle Scholar
  29. 29.
    Berry C, van’t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, McClure JD, Fearon WF, Barbato E, Tonino PA, De Bruyne B, Pijls NH, Oldroyd KG. VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): A multicenter study in consecutive patients. J Am Coll Cardiol 2013;61:1421-7.CrossRefPubMedGoogle Scholar
  30. 30.
    Jeremias A, Maehara A, Genereux P, Asrress KN, Berry C, De Bruyne B, Davies JE, Escaned J, Fearon WF, Gould KL, Johnson NP, Kirtane AJ, Koo BK, Marques KM, Nijjer S, Oldroyd KG, Petraco R, Piek JJ, Pijls NH, Redwood S, Siebes M, Spaan JAE, van’t Veer M, Mintz GS, Stone GW. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study. J Am Coll Cardiol 2013;63:1253-61.CrossRefPubMedGoogle Scholar
  31. 31.
    Johnson NP, Kirkeeide RL, Asrress KN, Fearon WF, Lockie T, Marques KM, Pyxaras SA, Rolandi MC, van’t Veer M, De Bruyne B, Piek JJ, Pijls NH, Redwood S, Siebes M, Spaan JA, Gould KL. Does the instantaneous wave-free ratio approximate the fractional flow reserve? J Am Coll Cardiol 2013;61:1428-35.CrossRefPubMedGoogle Scholar
  32. 32.
    Samady H, Gogas BD. Does flow during rest and relaxation suffice? J Am Coll Cardiol 2013;61:1436-9.CrossRefPubMedGoogle Scholar
  33. 33.
    Meuwissen M, Siebes M, Chamuleau SA, van Eck-Smit BL, Koch KT, de Winter RJ, Tijssen JG, Spaan JA, Piek JJ. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 2002;106:441-6.CrossRefPubMedGoogle Scholar
  34. 34.
    Berry C. Fractional flow reserve, coronary flow reserve and the index of microvascular resistance in clinical practice. Radcliffe Cardiology.com 2014:1-6.Google Scholar
  35. 35.
    Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res 1978;43:92--101.CrossRefPubMedGoogle Scholar
  36. 36.
    Bellamy RF. Calculation of coronary vascular resistance. Cardiovasc Res 1980;14:261-9.CrossRefPubMedGoogle Scholar
  37. 37.
    Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293-309.CrossRefPubMedGoogle Scholar
  38. 38.
    Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, Whitbourn R, Macisaac A, Kritharides L, Wilson A, Ng MK. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv 2013;6:53-8.CrossRefPubMedGoogle Scholar
  39. 39.
    van de Hoef TP, Meuwissen M, Escaned J, Sen S, Petraco R, van Lavieren MA, Echavarria-Pinto M, Nolte F, Nijjer S, Chamuleau SA, Voskuil M, van Eck-Smit BL, Verberne HJ, Henriques JP, Koch KT, de Winter RJ, Spaan JA, Siebes M, Tijssen JG, Davies JE, Piek JJ. Head-to-head comparison of basal stenosis resistance index, instantaneous wave-free ratio, and fractional flow reserve: Diagnostic accuracy for stenosis-specific myocardial ischaemia. EuroIntervention 2015;11:914-25.CrossRefPubMedGoogle Scholar
  40. 40.
    Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Dorbala S, Charytan DM, Blankstein R, Di Carli MF. Coronary vascular dysfunction and prognosis in patients with chronic kidney disease. JACC Cardiovasc Imaging 2012;5:1025-34.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, Dorbala S, Blankstein R, Di Carli MF. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 2015;131:19-27.CrossRefPubMedGoogle Scholar
  43. 43.
    Gewirtz H. PET measurement of adenosine stimulated absolute myocardial blood flow for physiological assessment of the coronary circulation. J Nucl Cardiol 2012;19:347-54.CrossRefPubMedGoogle Scholar
  44. 44.
    Gewirtz H, Dilsizian V. Integration of quantitative positron emission tomography absolute myocardial blood flow measurements in the clinical management of coronary artery disease. Circulation 2016;133:2180-96.CrossRefPubMedGoogle Scholar
  45. 45.
    Stuijfzand WJ, Uusitalo V, Kero T, Danad I, Rijnierse MT, Saraste A, Raijmakers PG, Lammertsma AA, Harms HJ, Heymans MW, Huisman MC, Marques KM, Kajander SA, Pietila M, Sorensen J, van Royen N, Knuuti J, Knaapen P. Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease. Circ Cardiovasc Imaging 2015;8:e002400.CrossRefPubMedGoogle Scholar
  46. 46.
    Klocke FJ, Lee DC. Absolute myocardial blood flow emerging role in coronary pathophysiology and clinical disease. JACC Cardiovasc Imaging 2011;4:999-1001.CrossRefPubMedGoogle Scholar
  47. 47.
    Dilsizian V, Bacharach S, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, Gropler RJ, Knuuti J, Schelbert HR, Travin MI. ASNC IMAGING GUIDELINES FOR NUCLEAR CARDIOLOGY PROCEDURES: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2016;23:1187-226.CrossRefPubMedGoogle Scholar
  48. 48.
    Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, Camici PG, Cerqueira MD, Chow BJ, Di Carli MF, Dorbala S, Gewirtz H, Gropler RJ, Kaufmann PA, Knaapen P, Knuuti J, Merhige ME, Rentrop KP, Ruddy TD, Schelbert HR, Schindler TH, Schwaiger M, Sdringola S, Vitarello J, Williams KA Sr, Gordon D, Dilsizian V, Narula J. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62:1639-53.CrossRefPubMedGoogle Scholar
  49. 49.
    Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 2010;3:623-40.CrossRefPubMedGoogle Scholar
  50. 50.
    Danad I, Raijmakers PG, Appelman YE, Harms HJ, de Haan S, van den Oever ML, Heymans MW, Tulevski II, van Kuijk C, Hoekstra OS, Lammertsma AA, Lubberink M, van Rossum AC, Knaapen P. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 2013;54:55-63.CrossRefPubMedGoogle Scholar
  51. 51.
    Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging 2009;2:751-8.CrossRefPubMedGoogle Scholar
  52. 52.
    Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 2010;122:603-13.CrossRefPubMedGoogle Scholar
  53. 53.
    Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, Boellaard R, van Rossum AC, Lammertsma AA, Knaapen P. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: A [15O]H2O PET study. Eur Heart J 2014;35:2094-105.CrossRefPubMedGoogle Scholar
  54. 54.
    Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, Heymans MW, Kajander SA, Pietila M, James S, Sorensen J, Knaapen P, Knuuti J. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464-75.CrossRefPubMedGoogle Scholar
  55. 55.
    Joutsiniemi E, Saraste A, Pietila M, Maki M, Kajander S, Ukkonen H, Airaksinen J, Knuuti J. Absolute flow or myocardial flow reserve for the detection of significant coronary artery disease? Eur Heart J Cardiovasc Imaging 2014;15:659-65.CrossRefPubMedGoogle Scholar
  56. 56.
    Lee JM, Kim CH, Koo BK, Hwang D, Park J, Zhang J, Tong Y, Jeon KH, Bang JI, Suh M, Paeng JC, Cheon GJ, Na SH, Ahn JM, Park SJ, Kim HS. Integrated myocardial perfusion imaging diagnostics improve detection of functionally significant coronary artery stenosis by 13N-ammonia positron emission tomography. Circ Cardiovasc Imaging 2016;9:e004768.CrossRefPubMedGoogle Scholar
  57. 57.
    Williams MC, Mirsadraee S, Dweck MR, Weir NW, Fletcher A, Lucatelli C, MacGillivray T, Golay SK, Cruden NL, Henriksen PA, Uren N, McKillop G, Lima JA, Reid JH, van Beek EJ, Patel D, Newby DE. Computed tomography myocardial perfusion vs (15)O-water positron emission tomography and fractional flow reserve. Eur Radiol 2016;27:1114-24.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990;15:459-74.CrossRefPubMedGoogle Scholar
  59. 59.
    Pizzi C, Xhyheri B, Costa GM, Faustino M, Flacco ME, Gualano MR, Fragassi G, Grigioni F, Manzoli L. Nonobstructive versus obstructive coronary artery disease in acute coronary syndrome: A meta-analysis. J Am Heart Assoc 2016;5:4185.CrossRefGoogle Scholar
  60. 60.
    Stone GW, Narula J. The myth of the mild vulnerable plaques. JACC Cardiovasc Imaging 2013;6:1124-6.CrossRefPubMedGoogle Scholar
  61. 61.
    Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, Appelman Y, Arslan F, Barbato E, Chen SL, Di Serafino L, Dominguez-Franco AJ, Dupouy P, Esen AM, Esen OB, Hamilos M, Iwasaki K, Jensen LO, Jimenez-Navarro MF, Katritsis DG, Kocaman SA, Koo BK, Lopez-Palop R, Lorin JD, Miller LH, Muller O, Nam CW, Oud N, Puymirat E, Rieber J, Rioufol G, Rodes-Cabau J, Sedlis SP, Takeishi Y, Tonino PA, Van Belle E, Verna E, Werner GS, Fearon WF, Pijls NH, De Bruyne B, Gould KL. Prognostic value of fractional flow reserve: Linking physiologic severity to clinical outcomes. J Am Coll Cardiol 2014;64:1641-54.CrossRefPubMedGoogle Scholar
  62. 62.
    Johnson NP, Gould KL. Physiological basis for angina and ST-segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging 2011;4:990-8.CrossRefPubMedGoogle Scholar
  63. 63.
    De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994;89:1013-22.CrossRefPubMedGoogle Scholar
  64. 64.
    Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. JACC Cardiovasc Imaging 2012;5:430-40.CrossRefPubMedGoogle Scholar
  65. 65.
    Kono AK, Coenen A, Lubbers M, Kurata A, Rossi A, Dharampal A, Dijkshoorn M, van Geuns RJ, Krestin GP, Nieman K. Relative myocardial blood flow by dynamic computed tomographic perfusion imaging predicts hemodynamic significance of coronary stenosis better than absolute blood flow. Invest Radiol 2014;49:801-7.CrossRefPubMedGoogle Scholar
  66. 66.
    Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: Microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging 2012;5:154-66.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lee DC, Johnson NP. Quantification of absolute myocardial blood flow by magnetic resonance perfusion imaging. JACC Cardiovasc Imaging 2009;2:761-70.CrossRefPubMedGoogle Scholar
  68. 68.
    Norgaard BL, Leipsic J, Koo BK, Zarins CK, Jensen JM, Sand NP, Taylor CA. Coronary computed tomography angiography derived fractional flow reserve and plaque stress. Curr Cardiovasc Imaging Rep 2016;9:2.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lu MT, Ferencik M, Roberts RS, Lee KL, Ivanov A, Adami E, Mark DB, Jaffer FA, Leipsic JA, Douglas PS, Hoffmann U. Noninvasive FFR derived from coronary CT angiography: Management and outcomes in the PROMISE trial. JACC Cardiovasc Imaging 2017;10:1350-8.CrossRefPubMedGoogle Scholar
  70. 70.
    Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, Bar F, van’t Veer M, Hoorntje J, Koolen J, Wijns W, de Bruyne B. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007;49:2105-11.CrossRefPubMedGoogle Scholar
  71. 71.
    Anderson HV, Roubin GS, Leimgruber PP, Cox WR, Douglas JS Jr, King SB 3rd, Gruentzig AR. Measurement of transstenotic pressure gradient during percutaneous transluminal coronary angioplasty. Circulation 1986;73:1223-30.CrossRefPubMedGoogle Scholar
  72. 72.
    Huggins GS, Pasternak RC, Alpert NM, Fischman AJ, Gewirtz H. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse [see comments]. Circulation 1998;98:1291-6.CrossRefPubMedGoogle Scholar
  73. 73.
    Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 1990;13:555-65.CrossRefPubMedGoogle Scholar
  74. 74.
    Laaksonen MS, Kalliokoski KK, Luotolahti M, Kemppainen J, Teras M, Kyrolainen H, Nuutila P, Knuuti J. Myocardial perfusion during exercise in endurance-trained and untrained humans. Am J Physiol Regul Integr Comp Physiol 2007;293:R837-43.CrossRefPubMedGoogle Scholar
  75. 75.
    Bourque JM, Charlton GT, Holland BH, Belyea CM, Watson DD, Beller GA. Prognosis in patients achieving >/=10 METS on exercise stress testing: Was SPECT imaging useful? J Nucl Cardiol 2011;18:230-7.CrossRefPubMedGoogle Scholar
  76. 76.
    Sen S. PhD thesis: Assessment of intra-coronary pressure and flow velocity relations distal to coronary stenoses to derive a novel index of stenosis severity. Imperial College London; Imperial College Science, Technology, Medicine. 2013.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  1. 1.Department of Medicine (Cardiology Division), Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations