Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2017. Part 2 of 2: Myocardial perfusion imaging

Review Article

Abstract

In 2017, the Journal of Nuclear Cardiology published many high-quality articles. In this review, we will summarize a selection of these articles to provide a concise review of the main advancements that have recently occurred in the field. In the first article of this 2-part series, we focused on publications dealing with positron emission tomography, computed tomography, and magnetic resonance. This review will place emphasis on myocardial perfusion imaging using single-photon emission computed tomography summarizing advances in the field including prognosis, safety and tolerability, the impact of imaging on management, and the use of novel imaging protocols.

Keywords

Myocardial perfusion imaging SPECT Prognosis Exercise Phase analysis Regadenoson 

Abbreviations

AV

Atrioventricular

CAD

Coronary artery disease

CTCA

Computed tomography coronary angiography

CZT

Cadmium-zinc-telluride

ESRD

End-stage renal disease

LVEF

Left ventricular ejection fraction

MI

Myocardial infarction

MPI

Myocardial perfusion imaging

Notes

Disclosure

Dr. Fadi G. Hage reports research grant support from Astellas Pharma. Wael A. AlJaroudi has no conflicts of interest related to this work.

References

  1. 1.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the journal of nuclear cardiology in 2016: Part 2 of 2-myocardial perfusion imaging. J Nucl Cardiol. 2017;24:1190–9.CrossRefPubMedGoogle Scholar
  2. 2.
    AlJaroudi W, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2016. Part 1 of 2: Positron emission tomography, computed tomography and magnetic resonance. J Nucl Cardiol. 2016;2017:649–56.Google Scholar
  3. 3.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2015-Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol. 2016;23:493–8.CrossRefPubMedGoogle Scholar
  4. 4.
    AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol. 2015;2016:122–30.Google Scholar
  5. 5.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol. 2015;22:714–9.CrossRefPubMedGoogle Scholar
  6. 6.
    AlJaroudi WA, Hage FG. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging. J Nucl Cardiol. 2015;22:507–12.CrossRefPubMedGoogle Scholar
  7. 7.
    AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol. 2017;2018:320–30.Google Scholar
  8. 8.
    Shaw LJ, Hage FG, Berman DS, Hachamovitch R, Iskandrian A. Prognosis in the era of comparative effectiveness research: where is nuclear cardiology now and where should it be? J Nucl Cardiol. 2012;19:1026–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Hage FG, Ghimire G, Lester D, McKay J, Bleich S, El-Hajj S, et al. The prognostic value of regadenoson myocardial perfusion imaging. J Nucl Cardiol. 2015;22:1214–21.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lima R, Peclat T, Soares T, Ferreira C, Souza AC, Camargo G. Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera. J Nucl Cardiol. 2017;24:245–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Henzlova MJ, Duvall WL. What do we know? What do we need to know? J Nucl Cardiol. 2017;24:252–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Yao Z, Zhu H, Li W, Chen C, Wang H, Shi L, et al. Adenosine triphosphate stress myocardial perfusion imaging for risk stratification of patients aged 70 years and older with suspected coronary artery disease. J Nucl Cardiol. 2017;24:429–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Saab R, Hage FG. Vasodilator stress agents for myocardial perfusion imaging. J Nucl Cardiol. 2017;24:434–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Gimelli A, Liga R, Duce V, Kusch A, Clemente A, Marzullo P. Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study. J Nucl Cardiol. 2017;24:687–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Sabharwal N, Lahiri A. Multi-vessel disease and CZT SPECT. Comparison with coronary angiography. J Nucl Cardiol. 2017;24:696–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Gimelli A, Liga R, Pasanisi EM, Casagranda M, Marzullo P. Myocardial ischemia in the absence of obstructive coronary lesion: The role of post-stress diastolic dysfunction in detecting early coronary atherosclerosis. J Nucl Cardiol. 2017;24:1542–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Dakik HA. Non-invasive imaging in suspected coronary artery disease: Choosing the right test from the first time. J Nucl Cardiol. 2017;24:523–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Songy B. Detection of non-obstructive coronary artery disease: Is post-stress diastolic dysfunction assessed by myocardial perfusion imaging a useful tool? J Nucl Cardiol. 2017;24:1551–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Shrestha U, Sciammarella M, Alhassen F, Yeghiazarians Y, Ellin J, Verdin E, et al. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and (99 m)Tc-tetrofosmin: Method and validation. J Nucl Cardiol. 2017;24:268–77.CrossRefPubMedGoogle Scholar
  20. 20.
    Slomka P, Berman DS, Germano G. Myocardial blood flow from SPECT. J Nucl Cardiol. 2017;24:278–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Parikh K, Appis A, Doukky R. Cardiac imaging for the assessment of patients being evaluated for kidney or liver transplantation. J Nucl Cardiol. 2015;22:282–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Doukky R, Fughhi I, Campagnoli T, Wassouf M, Ali A. The prognostic value of regadenoson SPECT myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol. 2017;24:112–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Miller EO, Schwartz RG. Cardiovascular risk assessment with regadenoson SPECT MPI in patients with end-stage renal disease is safe, effective, and well tolerated: Does it matter? J Nucl Cardiol. 2017;24:119–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Abuzeid W, Iwanochko RM, Wang X, Kim SJ, Husain M, Lee DS. Prognostic impact of SPECT-MPI after renal transplantation. J Nucl Cardiol. 2017;24:295–303.CrossRefPubMedGoogle Scholar
  25. 25.
    Kan K, Bangalore S. Cardiovascular risk stratification after renal transplant: Is SPECT-MPI the answer? J Nucl Cardiol. 2017;24:304–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Ather S, Iskandrian AE, Hage FG. Sources of variability in the measurement of perfusion defect size using commercially available software programs: Are there gender differences? J Nucl Cardiol. 2017;24:1089–93.CrossRefPubMedGoogle Scholar
  27. 27.
    Ather S, Iqbal F, Gulotta J, Aljaroudi W, Heo J, Iskandrian AE, et al. Comparison of three commercially available softwares for measuring left ventricular perfusion and function by gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2014;21:673–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Bajaj NS, Singh S, Farag A, El-Hajj S, Heo J, Iskandrian AE, et al. The prognostic value of non-perfusion variables obtained during vasodilator stress myocardial perfusion imaging. J Nucl Cardiol. 2016;23:390–413.CrossRefPubMedGoogle Scholar
  29. 29.
    Andrikopoulou E, Hage FG. Heart rate response to regadenoson: Making the case for its value in clinical practice. J Nucl Cardiol. 2016;23:575–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE. A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2011;18:1086–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Hage FG, Dean P, Bhatia V, Iqbal F, Heo J, Iskandrian AE. The prognostic value of the heart rate response to adenosine in relation to diabetes mellitus and chronic kidney disease. Am Heart J. 2011;162:356–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Andrikopoulou E, AlJaroudi WA, Farag A, Lester D, Patel H, Iskandrian AE, et al. The reproducibility and prognostic value of serial measurements of heart rate response to regadenoson during myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2016;43:1493–502.CrossRefPubMedGoogle Scholar
  33. 33.
    Bellam N, Veledar E, Dorbala S, Di Carli MF, Shah S, Eapen D, et al. Prognostic significance of impaired chronotropic response to pharmacologic stress Rb-82 PET. J Nucl Cardiol. 2014;21:233–44.CrossRefPubMedGoogle Scholar
  34. 34.
    Uzendu AI, Iskandrian A, Hage FG. The heart rate response to regadenoson in patients with atrial fibrillation. J Nucl Cardiol. 2017.  https://doi.org/10.1007/s12350-017-1051-4.PubMedGoogle Scholar
  35. 35.
    Gomez J, Fughhi I, Campagnoli T, Ali A, Doukky R. Impact of integrating heart rate response with perfusion imaging on the prognostic value of regadenoson SPECT myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol. 2017;24:1666–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Dakik HA. Abnormal heart rate response with vasodilator stress myocardial perfusion imaging: Relevance to clinical practice. J Nucl Cardiol. 2017;24:1672–3.CrossRefPubMedGoogle Scholar
  37. 37.
    Witbrodt B, Goyal A, Kelkar AA, Dorbala S, Chow BJW, Di Carli MF, et al. Prognostic significance of blood pressure response during vasodilator stress Rb-82 positron emission tomography myocardial perfusion imaging. J Nucl Cardiol. 2017;24:1966–75.CrossRefPubMedGoogle Scholar
  38. 38.
    Reyes E, Hage FG. The blood pressure response to vasodilator stress does not provide independent prognostic information. J Nucl Cardiol. 2017;24:1976–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Lester D, El-Hajj S, Farag AA, Bhambhvani P, Tauxe L, Heo J, et al. Prognostic value of transient ischemic dilation with regadenoson myocardial perfusion imaging. J Nucl Cardiol. 2016;23:1147–55.CrossRefPubMedGoogle Scholar
  40. 40.
    Golzar Y, Olusanya A, Pe N, Dua SG, Golzar J, Gidea C, et al. The significance of automatically measured transient ischemic dilation in identifying severe and extensive coronary artery disease in regadenoson, single-isotope technetium-99 m myocardial perfusion SPECT. J Nucl Cardiol. 2015;22:526–34.CrossRefPubMedGoogle Scholar
  41. 41.
    Jameria ZA, Abdallah M, Dwivedi A, Washburn E, Khan N, Khaleghi M, et al. Computer derived transient ischemic dilation ratio for identifying extensive coronary artery disease using a CZT camera and imaging in the upright position. J Nucl Cardiol. 2017;24:1702–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Slomka PJ, Berman DS, Germano G. Normal limits for transient ischemic dilation with (99 m)Tc myocardial perfusion SPECT protocols. J Nucl Cardiol. 2017;24:1709–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Hage FG. Regadenoson for myocardial perfusion imaging: Is it safe? J Nucl Cardiol. 2014;21:871–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Hage FG, Iskandrian AE. Serious complications associated with regadenoson administration for myocardial perfusion imaging: a commentary. J Nucl Cardiol. 2014;21:877–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Rai M, Ahlberg AW, Marwell J, Chaudhary W, Savino JA 3rd, Alter EL, et al. Safety of vasodilator stress myocardial perfusion imaging in patients with elevated cardiac biomarkers. J Nucl Cardiol. 2017;24:724–34.CrossRefPubMedGoogle Scholar
  46. 46.
    Doukky R, Golzar Y. Safety of stress testing in patients with elevated cardiac biomarkers: Are all modalities created equal? J Nucl Cardiol. 2017;24:735–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Hussain N, Chaudhry W, Ahlberg AW, Amara RS, Elfar A, Parker MW, et al. An assessment of the safety, hemodynamic response, and diagnostic accuracy of commonly used vasodilator stressors in patients with severe aortic stenosis. J Nucl Cardiol. 2017;24:1200–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Parastatidis I, Lerakis S. The use of vasodilator myocardial perfusion imaging in severe aortic stenosis: Is it time for a new prospective study? J Nucl Cardiol. 2017;24:1214–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Andrikopoulou E, Hage FG. Adverse effects associated with regadenoson myocardial perfusion imaging. J Nucl Cardiol. 2018.  https://doi.org/10.1007/s12350-018-1218-7.PubMedGoogle Scholar
  50. 50.
    Massalha S, Reizberg I, Israel O, Kapeliovich M, Sholy H, Koskosi A, et al. Conduction abnormalities during dipyridamole stress testing. J Nucl Cardiol. 2017;24:405–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Subbiah R, Patil PV. Arrhythmias in vasodilator stress testing. J Nucl Cardiol. 2017;24:410–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Andrikopoulou E, Morgan CJ, Brice L, Bajaj NS, Doppalapudi H, Iskandrian AE, et al. Incidence of atrioventricular block with vasodilator stress SPECT: A meta-analysis. J Nucl Cardiol. 2017.  https://doi.org/10.1007/s12350-017-1081-y.Google Scholar
  53. 53.
    Townsend R, Desai A, Rammelsberg D, Kowalski D, Simmons N, Kitt TM. Safety and tolerability of intravenous regadenoson in healthy subjects: A randomized, repeat-dose, placebo-controlled study. J Nucl Cardiol. 2017;24:57–65.CrossRefPubMedGoogle Scholar
  54. 54.
    Thomas GS, Jolly AF, Safani M. When to re-dose regadenoson? J Nucl Cardiol. 2017;24:66–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Doran JA, Sajjad W, Schneider MD, Gupta R, Mackin ML, Schwartz RG. Aminophylline and caffeine for reversal of adverse symptoms associated with regadenoson SPECT MPI. J Nucl Cardiol. 2017;24:1062–70.CrossRefPubMedGoogle Scholar
  56. 56.
    Jolly AF, Thomas GS. Intravenous caffeine: An alternative to aminophylline to reverse adverse effects during regadenoson myocardial perfusion imaging. J Nucl Cardiol. 2017;24:1071–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Fughhi I, Campagnoli T, Ali A, Doukky R. Impact of a regimented aminophylline administration protocol on the burden of regadenoson-induced ischemia detected by SPECT myocardial perfusion imaging. J Nucl Cardiol. 2017;24:1571–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Daya HA, Hage FG. Effect of aminophylline administration on the diagnostic yield of vasodilator myocardial perfusion imaging. J Nucl Cardiol. 2017;24:1579–82.CrossRefPubMedGoogle Scholar
  59. 59.
    Thomas GS, Cullom SJ, Kitt TM, Feaheny KM, Ananthasubramaniam K, Gropler RJ, et al. The EXERRT trial: “EXErcise to Regadenoson in Recovery Trial”: A phase 3b, open-label, parallel group, randomized, multicenter study to assess regadenoson administration following an inadequate exercise stress test as compared to regadenoson without exercise for myocardial perfusion imaging using a SPECT protocol. J Nucl Cardiol. 2017;24:788–802.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mahmarian JJ. Regadenoson stress during low-level exercise: The EXERRT trial-does it move the needle? J Nucl Cardiol. 2017;24:803–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Janvier L, Pinaquy J, Douard H, Karcher G, Bordenave L. A useful and easy to develop combined stress test for myocardial perfusion imaging: Regadenoson and isometric exercise, preliminary results. J Nucl Cardiol. 2017;24:34–40.CrossRefPubMedGoogle Scholar
  62. 62.
    Ceyrat Q, Mesguich C, Janvier L, Douard H, Bordenave L, Pinaquy JB. The impact of combination of regadenoson and isometric exercise on image quality of myocardial perfusion scintigraphy. J Nucl Cardiol. 2017;24:993–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Kansal P, Holly TA. A helping hand for regadenoson tests. J Nucl Cardiol. 2017;24:41–2.CrossRefPubMedGoogle Scholar
  64. 64.
    Kureshi F, Abdallah MS. ISCHEMIA, to revascularize or not to revascularize. J Nucl Cardiol. 2017;24:1699–701.CrossRefPubMedGoogle Scholar
  65. 65.
    Iskandrian AE, Roth CP, Hage FG. Serial imaging and outcome prediction. J Nucl Cardiol. 2016;23:117–21.CrossRefPubMedGoogle Scholar
  66. 66.
    El-Hajj S, AlJaroudi WA, Farag A, Bleich S, Manaoragada P, Iskandrian AE, et al. Effect of changes in perfusion defect size during serial regadenoson myocardial perfusion imaging on cardiovascular outcomes in high-risk patients. J Nucl Cardiol. 2016;23:101–12.CrossRefPubMedGoogle Scholar
  67. 67.
    Iskandrian AE, Hage FG, Shaw LJ, Mahmarian JJ, Berman DS. Serial myocardial perfusion imaging: defining a significant change and targeting management decisions. JACC Cardiovasc Imaging. 2014;7:79–96.CrossRefPubMedGoogle Scholar
  68. 68.
    Nudi F, Di Belardino N, Versaci F, Pinto A, Procaccini E, Neri G, et al. Impact of coronary revascularization vs medical therapy on ischemia among stable patients with or suspected coronary artery disease undergoing serial myocardial perfusion scintigraphy. J Nucl Cardiol. 2017;24:1690–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Bittencourt MS, Blankstein R. Coronary computed tomography angiography: How should we act on what we find? J Nucl Cardiol. 2017;24:1279–81.CrossRefPubMedGoogle Scholar
  70. 70.
    Peix A. Functional versus anatomical approach in stable coronary artery disease patients: Perspective of low- and middle-income countries. J Nucl Cardiol. 2017;24:518–22.CrossRefPubMedGoogle Scholar
  71. 71.
    Uretsky S, Argulian E, Supariwala A, Agarwal SK, El-Hayek G, Chavez P, et al. Comparative effectiveness of coronary CT angiography vs stress cardiac imaging in patients following hospital admission for chest pain work-up: The Prospective First Evaluation in Chest Pain (PERFECT) Trial. J Nucl Cardiol. 2017;24:1267–78.CrossRefPubMedGoogle Scholar
  72. 72.
    Karthikeyan G, Guzic Salobir B, Jug B, Devasenapathy N, Alexanderson E, Vitola J, et al. Functional compared to anatomical imaging in the initial evaluation of patients with suspected coronary artery disease: An international, multi-center, randomized controlled trial (IAEA-SPECT/CTA study). J Nucl Cardiol. 2017;24:507–17.CrossRefPubMedGoogle Scholar
  73. 73.
    Morgan CJ. Statistical issues associated with terminating a clinical trial due to slow enrollment. J Nucl Cardiol. 2017;24:525–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Taqueti VR, Dorbala S, Wolinsky D, Abbott B, Heller GV, Bateman TM, et al. Myocardial perfusion imaging in women for the evaluation of stable ischemic heart disease-state-of-the-evidence and clinical recommendations. J Nucl Cardiol. 2017;24:1402–26.CrossRefPubMedGoogle Scholar
  75. 75.
    Patel MR, Calhoon JH, Dehmer GJ, Grantham JA, Maddox TM, Maron DJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society of Thoracic Surgeons. J Nucl Cardiol. 2017;24:1759–92.CrossRefPubMedGoogle Scholar
  76. 76.
    Abu Daya H, Hage FG. Guidelines in review: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart disease. J Nucl Cardiol. 2017;24:1793–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Mahmarian JJ. Implementation of stress-only imaging: What will it take? J Nucl Cardiol. 2017;24:821–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Chaudhry W, Hussain N, Ahlberg AW, Croft LB, Fernandez AB, Parker MW, et al. Multicenter evaluation of stress-first myocardial perfusion image triage by nuclear technologists and automated quantification. J Nucl Cardiol. 2017;24:809–20.CrossRefPubMedGoogle Scholar
  79. 79.
    van Dijk JD, Mouden M, Ottervanger JP, van Dalen JA, Knollema S, Slump CH, et al. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT. J Nucl Cardiol. 2017;24:395–401.CrossRefPubMedGoogle Scholar
  80. 80.
    Pazhenkottil AP, Kaufmann PA, Gaemperli O. Attenuation correction in stress-only myocardial perfusion imaging. J Nucl Cardiol. 2017;24:402–4.CrossRefPubMedGoogle Scholar
  81. 81.
    Taillefer R. Myocardial perfusion imaging with 99mTc-labeled radiopharmaceuticals: How fast can a stress-rest same-day imaging protocol be completed? J Nucl Cardiol. 2017;24:1328–31.CrossRefPubMedGoogle Scholar
  82. 82.
    Liga R, Gimelli A. Detection of ischemia with early myocardial perfusion imaging: You see more if you watch before. J Nucl Cardiol. 2017;24:1157–60.CrossRefPubMedGoogle Scholar
  83. 83.
    Meyer C, Weinmann P. Validation of early image acquisitions following Tc-99 m sestamibi injection using a semiconductors camera of cadmium-zinc-telluride. J Nucl Cardiol. 2017;24:1149–56.CrossRefPubMedGoogle Scholar
  84. 84.
    Katsikis A, Theodorakos A, Kouzoumi A, Kitziri E, Georgiou E, Koutelou M. Fast myocardial perfusion imaging with (99 m)Tc in challenging patients using conventional SPECT cameras. J Nucl Cardiol. 2017;24:1314–27.CrossRefPubMedGoogle Scholar
  85. 85.
    Slomka P, Germano G. Optimizing radiation dose and imaging time with conventional myocardial perfusion SPECT: Technical aspects. J Nucl Cardiol. 2017;24:888–91.CrossRefPubMedGoogle Scholar
  86. 86.
    Lecchi M, Martinelli I, Zoccarato O, Maioli C, Lucignani G, Del Sole A. Comparative analysis of full-time, half-time, and quarter-time myocardial ECG-gated SPECT quantification in normal-weight and overweight patients. J Nucl Cardiol. 2017;24:876–87.CrossRefPubMedGoogle Scholar
  87. 87.
    Salimian S, Thibault B, Finnerty V, Gregoire J, Harel F. Phase analysis of gated blood pool SPECT for multiple stress testing assessments of ventricular mechanical dyssynchrony in a tachycardia-induced dilated cardiomyopathy canine model. J Nucl Cardiol. 2017;24:145–57.CrossRefPubMedGoogle Scholar
  88. 88.
    Germano G, Van Kriekinge SD. Measuring mechanical cardiac dyssynchrony in the 3-D era. J Nucl Cardiol. 2017;24:158–61.CrossRefPubMedGoogle Scholar
  89. 89.
    Zafrir N, Bental T, Strasberg B, Solodky A, Mats I, Gutstein A, et al. Yield of left ventricular dyssynchrony by gated SPECT MPI in patients with heart failure prior to implantable cardioverter-defibrillator or cardiac resynchronization therapy with a defibrillator: Characteristics and prediction of cardiac outcome. J Nucl Cardiol. 2017;24:122–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Yoshinaga K. Predicting cardiac events using ventricular dyssynchrony in patients who received implantable cardioverter defibrillators: Are more treatment options required? J Nucl Cardiol. 2017;24:130–3.CrossRefPubMedGoogle Scholar
  91. 91.
    Chiang KF, Hung GU, Tsai SC, Cheng CM, Chang YC, Lin WY, et al. Impact of cardiac reverse remodeling after cardiac resynchronization therapy assessed by myocardial perfusion imaging on ventricular arrhythmia. J Nucl Cardiol. 2017;24:1282–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Malhotra S. Myocardial substrate after cardiac resynchronization therapy and the risk of ventricular arrhythmias. J Nucl Cardiol. 2017;24:1289–91.CrossRefPubMedGoogle Scholar
  93. 93.
    Hess PL, Shaw LK, Fudim M, Iskandrian AE, Borges-Neto S. The prognostic value of mechanical left ventricular dyssynchrony defined by phase analysis from gated single-photon emission computed tomography myocardial perfusion imaging among patients with coronary heart disease. J Nucl Cardiol. 2017;24:482–90.CrossRefPubMedGoogle Scholar
  94. 94.
    Zafrir N. Left ventricular mechanical dyssynchrony in patients with coronary artery disease. J Nucl Cardiol. 2017;24:491–3.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  1. 1.Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Section of CardiologyBirmingham Veterans Affairs Medical CenterBirminghamUSA
  3. 3.Division of Cardiovascular Medicine, Cardiovascular ImagingClemenceau Medical CenterBeirutLebanon

Personalised recommendations