Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 555–569 | Cite as

Relationship between left ventricular dyssynchrony and scar burden in the genesis of ventricular tachyarrhythmia

  • Saurabh Malhotra
  • Deepak K. Pasupula
  • Ravi K. Sharma
  • Samir Saba
  • Prem Soman
Original Article

Abstract

Background

Left ventricular (LV) ejection fraction (EF) has poor predictive value for ventricular tachyarrhythmia (VT). Other parameters such as LV dyssynchrony (LVD), and LV scar burden have also been individually associated with VT, but the interplay of these factors in the genesis of VT has not been explored. This retrospective study sought to evaluate the relationship between LVD and imaging characteristics of the myocardial substrate in predicting VT.

Methods

We identified 183 patients (150 men; mean age: 64 ± 14 years and mean LVEF: 23% ± 7%), who received an implantable cardioverter defibrillator (ICD) for primary prevention and who underwent a gated single-photon emission computed tomography (GSPECT) myocardial perfusion scan prior to ICD implantation. LVD was determined by phase analysis of the GSPECT images. Occurrence of VTs was established through routine ICD interrogations and review of electronic medical records.

Results

LVD was present in 136 (74%) patients. VT occurred in 48 (26%) patients. Ninety-eight percent of patient who experienced VT had LVD. Patients without LVD had a significantly better survival free of both sustained and non-sustained VT (HR, 95% CI 4.90, 2.12-11.20; P < 0.0001). The combination of LVD and myocardial scar occupying > 6% of LV myocardium accounted for 83% of all VT events.

Conclusions

LVD assessment by GSPECT is strongly associated with incident VT in patients with low LVEF. The combination of LVD and scar burden predicted the majority of VT events.

Keywords

Heart failure ventricular tachyarrhythmia left ventricular dyssynchrony 

Abbreviations

CRT

Cardiac resynchronization therapy

EDV

End-diastolic volume

EF

Ejection fraction

GSPECT

Gated single-photon computed tomography

HBW

Histogram bandwidth

ICD

Implantable cardioverter defibrillator

LBBB

Left bundle branch block

LV

Left ventricular

PSD

Phase standard deviation

VT

Ventricular tachyarrhythmia

Spanish Abstract

Antecedentes

La fracción de eyección (FE) del Ventrículo Izquierdo (VI) tiene un pobre valor predictivo para taquiarritmias ventriculares (TV). Otros parámetros como la disincronía del VI (DVI) y la cantidad de cicatriz ventricular izquierda también se han asociado individualmente con TV, pero la interacción de estos factores en el origen de TV no ha sido explorada. Este estudio retrospectivo buscó evaluar la relación entre la disincronía del VI y las características del sustrato miocárdico por imagen en la predicción de TV.

Métodos

Identificamos 183 pacientes (150 hombres, edad media: 64 + 14 años y FEVI media: 23% + 7%), quienes recibieron un desfibrilador automático implantable (DAI) para prevención primaria y se les realizo un estudio de perfusión miocárdica con tomografía computarizada por emisión de fotón único sincronizada con el electrocardiograma (gated SPECT por sus siglas en inglés) previo al implante del DAI. La DVI se determinó mediante el análisis de fase de las imágenes del gated SPECT. La presencia de TV se estableció a través de interrogatorios de rutina del DAI y la revisión de registros médicos electrónicos.

Resultados

La DVI estuvo presente en 136 (74%) pacientes. Los eventos de TV ocurrieron en 48 (26%) pacientes. El noventa y ocho por ciento de los pacientes que sufrieron episodios de TV tenían DVI. Los pacientes sin DVI tuvieron una sobrevida significativamente mejor libre de eventos de TV sostenida y no sostenida (HR, 95% IC: 4.90, 2.12-11.20; P < 0.0001). La combinación de DVI y una cantidad de cicatriz miocárdica que ocupa mas del 6% del VI representó el 83% de todos los eventos de TV.

Conclusiones

La evaluación de DVI por gated SPECT está fuertemente asociada con la incidencia de TV en pacientes con FEVI baja. La combinación de DVI, y la cantidad de cicatriz predijo la mayoría de eventos de TV.

Chinese Abstract

背景

左心室 (LV) 射血分数 (EF) 对室性心动过速 (VT) 有较差的预测价值。左心室不同步性(LVD) 及疤痕负荷等其它参数也是 VT 的独立预测因素。但是这些因素在 VT 产生过程中的相互影响还没有被探索。这篇回顾性研究旨在评估:左室不同步性和心肌基质显像特点在预测VT时的关系。

方法

我们入选了183 名病人 (150 男性, 平均年龄: 64 ± 14 岁,平均 LVEF: 23% ± 7%), 这些病人均植入了用于一级预防的心律转复除颤器(ICD), 且在 ICD 植入前已行门控单电子发射计算机断层心肌灌注成像(GSPECT)。通过对 GSPECT 图像的相位分析获得 LVD。通过日常 ICD 程控和浏览电子病历资料确立 VT 的发生。

结果

136(74%)人有LVD, 48(26%)人有VT。有 VT 的病人中 98%有LVD。没有 LVD 的病人持续或非持续 VT 的发生明显减少 (HR, 95% DI:4.90, 2.12-11.20; P < 0,0001)。在所有的 VT 事件中, LVD 和大于 6%心肌疤痕的组合占比为 83%。

结论

在低 LVEF 病人中, GSPECT 评估的 LVD 与 VT 是强相关的。结合 LVD 与疤痕负担可预测大多数 VT 事件。

French Abstract

Contexte

La fraction d’éjection (FE) du ventricule gauche (VG) a une valeur prédictive faible pour les épisodes de tachyarythmie ventriculaire (TV). D’autres paramètres tels que la di-synchronisation ventriculaire gauche (DSVG) et la masse myocardique fibrosée ont été associées individuellement aux épisodes de TV. L’interaction de ces facteurs dans la genèse de la TV n’a pas encore été explorée. Cette étude rétrospective a cherché à évaluer la relation entre la di-synchronisation ventriculaire gauche et les caractéristiques des anomalies de l’imagerie ventriculaire gauche en tant qu’éléments prédicteurs de la tachycardie ventriculaire.

Méthodes

Nous avons identifié 183 patients (150 hommes, âge moyen: 64 + 14 ans et FEVG moyenne de: 23% + 7%), qui ont benéficié d’un défibrillateur implantable (ICD) pour la prévention primaire de la TV et qui ont eu une scintigraphie de perfusion myocardique (GSPECT) avant l’implantation de leur défibrillateur. La DSVG fut déterminée par l’ analyse des images de phase. La survenue de TV chez nos patients fut établie par analyse électronique des défibrillateurs.

Résultats

La DSVG fut détectée chez 136 patients (74%). Quarante huit d’entre eux ont eu une TV (26%). Quatre-vingt-dix-huit% des patients qui ont eu une TV avaient une DSVG. La survie des patients qui n’avaient pas de DSVG fut significativement meilleure et sans TV (de courte ou de longue durée) (HR, IC à 95%: 4,90, 2,12-11,20; P < 0,0001). La combinaison d’une DSVG et d’une fibrose du myocarde secondaire à un infarctus de plus de 6 6% s’est avérée présente dans 83% des épisodes de TV.

Conclusions

La DSVG évaluée par GSPECT est associée de manière significative aux épisodes de TV chez les patients avec une diminution significative de leur FEVG. La combinaison d’une DSVG et d’une fibrose myocardique permet de prédire la majorité des épisodes de TV.

Notes

Disclosures

Saurabh Malhotra—research support from the Syntermed Research Initiative, Syntermed Inc., and the Becker Fund for Heart Research, Community Foundation of Greater Buffalo; Deepak K Pasupula—none; Ravi K Sharma—none; Samir Saba—research support from NHLBI, Boston Scientific and Medtronic; and Prem Soman—Astellas: grant support and Alnylam Pharma: Advisory board.

Supplementary material

12350_2017_1095_MOESM1_ESM.pptx (512 kb)
Supplementary material 1 (PPTX 511 kb)
12350_2017_1095_MOESM2_ESM.mp3 (13.2 mb)
Supplementary material 2 (MP3 13552 kb)

References

  1. 1.
    Kutyifa V, Pouleur AC, Knappe D, Al-Ahmad A, Gibinski M, Wang PJ, et al. Dyssynchrony and the risk of ventricular arrhythmias. JACC Cardiovasc Imaging 2013;6:432-44.CrossRefPubMedGoogle Scholar
  2. 2.
    Ludwig DR, Friehling M, Schwartzman D, Saba S, Follansbee WP, Soman P. On the importance of image gating for the assay of left ventricular mechanical dyssynchrony using SPECT. J Nucl Med 2012;53:1892-6.CrossRefPubMedGoogle Scholar
  3. 3.
    Friehling M, Chen J, Saba S, Bazaz R, Schwartzman D, Adelstein EC, et al. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging 2011;4:532-9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006;113:1807-16.CrossRefPubMedGoogle Scholar
  5. 5.
    Hansen CL, Goldstein RA, Akinboboye OO, Berman DS, Botvinick EH, Churchwell KB, et al. Myocardial perfusion and function: Single photon emission computed tomography. J Nucl Cardiol 2007;14:e39-60.CrossRefPubMedGoogle Scholar
  6. 6.
    Kang X, Berman DS, Van Train KF, Amanullah AM. Clinical validation of automatic quantitative defect size in rest technetium-99m-sestamibi myocardial perfusion SPECT. J Nucl Med 1997;38:1441-6.PubMedGoogle Scholar
  7. 7.
    Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: Incremental prognostic value and use in risk stratification. Circulation 1996;93:905-14.CrossRefPubMedGoogle Scholar
  8. 8.
    Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997;30:1360-7.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.CrossRefPubMedGoogle Scholar
  10. 10.
    Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging 1990;9:144-50.CrossRefPubMedGoogle Scholar
  11. 11.
    Henneman MM, Chen J, Dibbets-Schneider P, Stokkel MP, Bleeker GB, Ypenburg C, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 2007;48:1104-11.CrossRefPubMedGoogle Scholar
  12. 12.
    Russo AM, Stainback RF, Bailey SR, Epstein AE, Heidenreich PA, Jessup M, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: A report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 2013;61:1318-68.CrossRefPubMedGoogle Scholar
  13. 13.
    Harrell FE. Regression modeling strategies. Berlin: Springer; 2001.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877-83.CrossRefPubMedGoogle Scholar
  16. 16.
    Bardy GH, Lee KL, Mark DB, Klein H, Wilber DJ, Cannom DS, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005;352:225-37.CrossRefPubMedGoogle Scholar
  17. 17.
    Weeke P, Johansen JB, Jorgensen OD, Nielsen JC, Møller M, Videbæk R, et al. Mortality and appropriate and inappropriate therapy in patients with ischaemic heart disease and implanted cardioverter-defibrillators for primary prevention: Data from the Danish ICD Register. Europace 2013;15(8):1150-7.CrossRefPubMedGoogle Scholar
  18. 18.
    MacFadden DR, Crystal E, Krahn AD, Mangat I, Healey JS, Dorian P, et al. Sex differences in implantable cardioverter-defibrillator outcomes: Findings from a prospective defibrillator database. Ann Intern Med 2012;156:195-203.CrossRefPubMedGoogle Scholar
  19. 19.
    Zwanziger J, Hall WJ, Dick AW, Zhao H, Mushlin AI, Hahn RM, et al. The cost effectiveness of implantable cardioverter-defibrillators: Results from the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J Am Coll Cardiol 2006;47:2310-8.CrossRefPubMedGoogle Scholar
  20. 20.
    Daubert JP, Zareba W, Cannom DS, McNitt S, Rosero SZ, Wang P, et al. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: Frequency, mechanisms, predictors, and survival impact. J Am Coll Cardiol 2008;51:1357-65.CrossRefPubMedGoogle Scholar
  21. 21.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: A prognostic study with fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002;40:2022-30.CrossRefPubMedGoogle Scholar
  22. 22.
    Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn HY, Lehner S, et al. Left ventricular dyssynchrony assessed by gated SPECT phase analysis is an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy. Eur J Nucl Med Mol Imaging 2012;39:1561-9.CrossRefPubMedGoogle Scholar
  23. 23.
    Aljaroudi WA, Hage FG, Hermann D, Doppalapudi H, Venkataraman R, Heo J, et al. Relation of left-ventricular dyssynchrony by phase analysis of gated SPECT images and cardiovascular events in patients with implantable cardiac defibrillators. J Nucl Cardiol 2010;17:398-404.CrossRefPubMedGoogle Scholar
  24. 24.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Ventricular dyssynchrony and risk markers of ventricular arrhythmias in nonischemic dilated cardiomyopathy: A study with phase analysis of angioscintigraphy. Pacing Clin Electrophysiol 2003;26:352-6.CrossRefPubMedGoogle Scholar
  25. 25.
    Ermis C, Seutter R, Zhu AX, Benditt LC, VanHeel L, Sakaguchi S, et al. Impact of upgrade to cardiac resynchronization therapy on ventricular arrhythmia frequency in patients with implantable cardioverter-defibrillators. J Am Coll Cardiol 2005;46:2258-63.CrossRefPubMedGoogle Scholar
  26. 26.
    Haugaa KH, Marek JJ, Ahmed M, Ryo K, Adelstein EC, Schwartzman D, et al. Mechanical dyssynchrony after cardiac resynchronization therapy for severely symptomatic heart failure is associated with risk for ventricular arrhythmias. J Am Soc Echocardiogr 2014;27:872-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Sebag FA, Lellouche N, Chen Z, Tritar A, O’Neill MD, Gill J, et al. Positive response to cardiac resynchronization therapy reduces arrhythmic events after elective generator change in patients with primary prevention CRT-D. J Cardiovasc Electrophysiol 2014;25:1368-75.PubMedGoogle Scholar
  28. 28.
    Lin G, Rea RF, Hammill SC, Hayes DL, Brady PA. Effect of cardiac resynchronisation therapy on occurrence of ventricular arrhythmia in patients with implantable cardioverter defibrillators undergoing upgrade to cardiac resynchronisation therapy devices. Heart 2008;94:186-90.CrossRefPubMedGoogle Scholar
  29. 29.
    Chen CC, Shen TY, Chang MC, Hung GU, Chen WC, Kao CH, et al. Stress-induced myocardial ischemia is associated with early post-stress left ventricular mechanical dyssynchrony as assessed by phase analysis of 201Tl gated SPECT myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2012;39:1904-9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Venkataraman R, Chen J, Garcia EV, Belardinelli L, Hage FG, Heo J, et al. Effect of ranolazine on left ventricular dyssynchrony in patients with coronary artery disease. Am J Cardiol 2012;110:1440-5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ghannam M, Mikhova K, Yun HJ, Lazarus JJ, Konerman M, Saleh A, et al. Relationship of non-invasive quantification of myocardial blood flow to arrhythmic events in patients with implantable cardiac defibrillators. J Nucl Cardiol 2017. doi: 10.1007/s12350-017-0975-z.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Saurabh Malhotra
    • 1
  • Deepak K. Pasupula
    • 2
  • Ravi K. Sharma
    • 3
  • Samir Saba
    • 4
  • Prem Soman
    • 4
  1. 1.Division of Cardiovascular MedicineJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUSA
  2. 2.Department of Internal MedicineUniversity of Pittsburgh Medical Center at McKeesportMcKeesportUSA
  3. 3.Division of Cardiovascular MedicineBeth Israel Deaconess Medical CenterBostonUSA
  4. 4.Division of Cardiology, Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations