Invasive assessment of coronary artery disease


Coronary artery disease is associated to high mortality and morbidity rates and an accurate diagnostic assessment during heart catheterization has a fundamental role in prognostic stratification and treatment choices. Coronary angiography has been integrated by intravascular imaging modalities, namely intravascular ultrasound and optical coherence tomography, which allow the precise quantification of the atherosclerotic burden of coronary arteries. The hemodynamic relevance of a given coronary stenosis can be assessed using stress or resting indexes: fractional flow reserve and instantaneous wave-free ratio are both coronary flow surrogates, used to guide percutaneous coronary interventions. This review summarizes the current state-of-the-art of invasive diagnostic methods during heart catheterization and highlights the potential role that an integration of anatomical and functional information enables.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6



Coronary artery disease


Chronic total occlusion


Fractional flow reserve


Instantaneous wave-free ratio


Index of microvascular resistance


Intravascular ultrasound


Left main coronary artery


Optical coherence tomography


Percutaneous coronary intervention


Quantitative coronary angiography


  1. 1.

    Mintz GS, Weissman NJ. Intravascular ultrasound in the drug-eluting stent era. J Am Coll Cardiol 2006;48:421-9.

    Article  PubMed  Google Scholar 

  2. 2.

    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 2012;59:1058-72.

    Article  PubMed  Google Scholar 

  3. 3.

    De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367:991-1001.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van' t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Kolh P, Windecker S, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 2014;46:517-92.

    Article  PubMed  Google Scholar 

  6. 6.

    Stadius ML, Alderman EL. Coronary artery revascularization. Critical need for, and consequences of, objective angiographic assessment of lesion severity. Circulation 1990;82:2231-4.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Berry C, L’Allier PL, Gregoire J, Lesperance J, Levesque S, Ibrahim R, et al. Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation 2007;115:1851-7.

    Article  PubMed  Google Scholar 

  8. 8.

    Nallamothu BK, Spertus JA, Lansky AJ, Cohen DJ, Jones PG, Kureshi F, et al. Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice: The Assessing Angiography (A2) project. Circulation 2013;127:1793-800.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Grundeken MJ, Ishibashi Y, Ramcharitar S, Tuinenburg JC, Reiber JH, Tu S, et al. The need for dedicated bifurcation quantitative coronary angiography (QCA) software algorithms to evaluate bifurcation lesions. EuroIntervention 2015;11 Suppl V:V44-9.

  10. 10.

    Grundeken MJ, Ishibashi Y, Genereux P, LaSalle L, Iqbal J, Wykrzykowska JJ, et al. Inter-core lab variability in analyzing quantitative coronary angiography for bifurcation lesions: A post-hoc analysis of a randomized trial. JACC Cardiovasc Interv 2015;8:305-14.

    Article  PubMed  Google Scholar 

  11. 11.

    Pyxaras SA, Tu S, Barbato E, Barbati G, Di Serafino L, De Vroey F, et al. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: Comparison with fractional flow reserve. Am Heart J 2013;166:1010-8.

    Article  PubMed  Google Scholar 

  12. 12.

    Sanidas E, Dangas G. Evolution of intravascular assessment of coronary anatomy and physiology: From ultrasound imaging to optical and flow assessment. Eur J Clin Invest 2013;43:996-1008.

    Article  PubMed  Google Scholar 

  13. 13.

    Mintz GS. Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol 2014;64:207-22.

    Article  PubMed  Google Scholar 

  14. 14.

    Oviedo C, Maehara A, Mintz GS, Araki H, Choi SY, Tsujita K, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: Where is the plaque really located? Circ Cardiovasc Interv 2010;3:105-12.

    Article  PubMed  Google Scholar 

  15. 15.

    de la Torre Hernandez JM, Hernandez Hernandez F, Alfonso F, Rumoroso JR, Lopez-Palop R, Sadaba M, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol 2011;58:351-8.

    Article  PubMed  Google Scholar 

  16. 16.

    Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 2009;120:1505-12.

    Article  PubMed  Google Scholar 

  17. 17.

    Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 2004;110:2831-6.

    Article  PubMed  Google Scholar 

  18. 18.

    Rathore S, Katoh O, Tuschikane E, Oida A, Suzuki T, Takase S. A novel modification of the retrograde approach for the recanalization of chronic total occlusion of the coronary arteries intravascular ultrasound-guided reverse controlled antegrade and retrograde tracking. JACC Cardiovasc Interv 2010;3:155-64.

    Article  PubMed  Google Scholar 

  19. 19.

    Zhang Y, Farooq V, Garcia-Garcia HM, Bourantas CV, Tian N, Dong S, et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: A meta-analysis of one randomised trial and ten observational studies involving 19,619 patients. EuroIntervention 2012;8:855-65.

    Article  PubMed  Google Scholar 

  20. 20.

    Klersy C, Ferlini M, Raisaro A, Scotti V, Balduini A, Curti M, et al. Use of IVUS guided coronary stenting with drug eluting stent: A systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies. Int J Cardiol 2013;170:54-63.

    Article  PubMed  Google Scholar 

  21. 21.

    Jang JS, Song YJ, Kang W, Jin HY, Seo JS, Yang TH, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: A meta-analysis. JACC Cardiovasc Interv 2014;7:233-43.

    Article  PubMed  Google Scholar 

  22. 22.

    Ahn JM, Kang SJ, Yoon SH, Park HW, Kang SM, Lee JY, et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol 2014;113:1338-47.

    Article  PubMed  Google Scholar 

  23. 23.

    Claessen BE, Maehara A, Fahy M, Xu K, Stone GW, Mintz GS. Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention. JACC Cardiovasc Imaging 2012;5:S111-8.

    Article  PubMed  Google Scholar 

  24. 24.

    Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: The VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging 2011;4:894-901.

    Article  PubMed  Google Scholar 

  26. 26.

    Cheng JM, Garcia-Garcia HM, de Boer SP, Kardys I, Heo JH, Akkerhuis KM, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J 2014;35:639-47.

    Article  PubMed  Google Scholar 

  27. 27.

    Serruys PW, Garcia-Garcia HM, Buszman P, Erne P, Verheye S, Aschermann M, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 2008;118:1172-82.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, et al. Expert review document part 2: Methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J 2012;33:2513-20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Onuma Y, Thuesen L, van Geuns RJ, van der Ent M, Desch S, Fajadet J, et al. Randomized study to assess the effect of thrombus aspiration on flow area in patients with ST-elevation myocardial infarction: An optical frequency domain imaging study-TROFI trial. Eur Heart J 2013;34:1050-60.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging 2015;8:198-209.

    Article  PubMed  Google Scholar 

  31. 31.

    Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, Nakagawa H, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 2012;33:78-85.

    Article  PubMed  Google Scholar 

  32. 32.

    Tian J, Ren X, Vergallo R, Xing L, Yu H, Jia H, et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: A combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol 2014;63:2209-16.

    Article  PubMed  Google Scholar 

  33. 33.

    Prati F, Di Vito L, Biondi-Zoccai G, Occhipinti M, La Manna A, Tamburino C, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: The Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 2012;8:823-9.

    Article  PubMed  Google Scholar 

  34. 34.

    Gomez-Lara J, Radu M, Brugaletta S, Farooq V, Diletti R, Onuma Y, et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv 2011;4:992-1001.

    Article  PubMed  Google Scholar 

  35. 35.

    Mattesini A, Secco GG, Dall’Ara G, Ghione M, Rama-Merchan JC, Lupi A, et al. ABSORB biodegradable stents versus second-generation metal stents: A comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc Interv 2014;7:741-50.

    Article  PubMed  Google Scholar 

  36. 36.

    Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J 2015;36:3346-55.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Maehara A, Ben-Yehuda O, Ali Z, Wijns W, Bezerra HG, Shite J, et al. Comparison of stent expansion guided by optical coherence tomography versus intravascular ultrasound: The ILUMIEN II Study (Observational Study of Optical Coherence Tomography [OCT] in Patients Undergoing Fractional Flow Reserve [FFR] and Percutaneous Coronary Intervention). JACC Cardiovasc Interv 2015;8:1704-14.

    Article  PubMed  Google Scholar 

  38. 38.

    Farooq V, Gogas BD, Okamura T, Heo JH, Magro M, Gomez-Lara J, et al. Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: The potential for clinical application. Eur Heart J 2013;34:875-85.

    Article  PubMed  Google Scholar 

  39. 39.

    Okamura T, Onuma Y, Garcia-Garcia HM, Regar E, Wykrzykowska JJ, Koolen J, et al. 3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. JACC Cardiovasc Interv 2010;3:836-44.

    Article  PubMed  Google Scholar 

  40. 40.

    Okamura T, Onuma Y, Yamada J, Iqbal J, Tateishi H, Nao T, et al. 3D optical coherence tomography: New insights into the process of optimal rewiring of side branches during bifurcational stenting. EuroIntervention 2014;10:907-15.

    Article  PubMed  Google Scholar 

  41. 41.

    Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993;87:1354-67.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Task Force on Myocardial Revascularization of the European Society of C, the European Association for Cardio-Thoracic S, European Association for Percutaneous Cardiovascular I, Wijns W, Kolh P, Danchin N, et al. Guidelines on myocardial revascularization. Eur Heart J 2010;31:2501-55.

    Article  Google Scholar 

  43. 43.

    Adjedj J, Toth GG, Johnson NP, Pellicano M, Ferrara A, Flore V, et al. Intracoronary adenosine: Dose-response relationship with hyperemia. JACC Cardiovasc Interv 2015;8:1422-30.

    Article  PubMed  Google Scholar 

  44. 44.

    Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van't Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007;49:2105-11.

    Article  PubMed  Google Scholar 

  45. 45.

    Toth G, De Bruyne B, Casselman F, De Vroey F, Pyxaras S, Di Serafino L, et al. Fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circulation 2013;128:1405-11.

    Article  PubMed  Google Scholar 

  46. 46.

    Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: The British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J 2015;36:100-11.

    Article  PubMed  Google Scholar 

  47. 47.

    Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, et al. Novel index for invasively assessing the coronary microcirculation. Circulation 2003;107:3129-32.

    Article  PubMed  Google Scholar 

  48. 48.

    De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: Experimental validation. Circulation 2001;104:2003-6.

    Article  PubMed  Google Scholar 

  49. 49.

    Pijls NH, De Bruyne B, Smith L, Aarnoudse W, Barbato E, Bartunek J, et al. Coronary thermodilution to assess flow reserve: Validation in humans. Circulation 2002;105:2482-6.

    Article  PubMed  Google Scholar 

  50. 50.

    Aarnoudse W, Fearon WF, Manoharan G, Geven M, van de Vosse F, Rutten M, et al. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation 2004;110:2137-42.

    Article  PubMed  Google Scholar 

  51. 51.

    Fearon WF, Low AF, Yong AS, McGeoch R, Berry C, Shah MG, et al. Prognostic value of the Index of Microcirculatory Resistance measured after primary percutaneous coronary intervention. Circulation 2013;127:2436-41.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Cuculi F, De Maria GL, Meier P, Dall'Armellina E, de Caterina AR, Channon KM, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014;64:1894-904.

    Article  PubMed  Google Scholar 

  53. 53.

    Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 2012;59:1392-402.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Berry C, van ‘t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, et al. VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): A multicenter study in consecutive patients. J Am Coll Cardiol 2013;61:1421-7.

    Article  PubMed  Google Scholar 

  55. 55.

    Jeremias A, Maehara A, Genereux P, Asrress KN, Berry C, De Bruyne B, et al. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol 2014;63:1253-61.

    Article  PubMed  Google Scholar 

  56. 56.

    Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 2017;376:1824-34.

    Article  PubMed  Google Scholar 

  57. 57.

    Gotberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017;376:1813-23.

    Article  PubMed  Google Scholar 

  58. 58.

    Leone AM, Scalone G, De Maria GL, Tagliaferro F, Gardi A, Clemente F, et al. Efficacy of contrast medium induced Pd/Pa ratio in predicting functional significance of intermediate coronary artery stenosis assessed by fractional flow reserve: Insights from the RINASCI study. EuroIntervention 2015;11:421-7.

    Article  PubMed  Google Scholar 

  59. 59.

    Tu S, Barbato E, Koszegi Z, Yang J, Sun Z, Holm NR, et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv 2014;7:768-77.

    Article  PubMed  Google Scholar 

  60. 60.

    Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: The task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013;34:2949-3003.

    Article  Google Scholar 

  61. 61.

    Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974;34:48-55.

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, et al. Evolving concepts of angiogram: Fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J 2014;35:2831-8.

    Article  PubMed  Google Scholar 

  63. 63.

    Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 2002;90:210-5.

    Article  PubMed  Google Scholar 

  64. 64.

    Yong AS, Ng AC, Brieger D, Lowe HC, Ng MK, Kritharides L. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J 2011;32:345-53.

    Article  PubMed  Google Scholar 

  65. 65.

    Saad M, Toelg R, Khattab AA, Kassner G, Abdel-Wahab M, Richardt G. Determination of haemodynamic significance of intermediate coronary lesions using three-dimensional coronary reconstruction. EuroIntervention 2009;5:573-9.

    Article  PubMed  Google Scholar 

  66. 66.

    Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: Relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 1999;100:250-5.

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Puri R, Kapadia SR, Nicholls SJ, Harvey JE, Kataoka Y, Tuzcu EM. Optimizing outcomes during left main percutaneous coronary intervention with intravascular ultrasound and fractional flow reserve: The current state of evidence. JACC Cardiovasc Interv 2012;5:697-707.

    Article  PubMed  Google Scholar 

  68. 68.

    Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: A comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol 2012;59:1080-9.

    Article  PubMed  Google Scholar 

  69. 69.

    Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J 2012;76:2218-25.

    Article  PubMed  Google Scholar 

Download references


The department of cardiology of the Leiden University Medical Center, The Netherlands, has received unrestricted research grants from Biotronik, Medtronic, Boston Scientific and Edwards Lifescience. Johan H. C. Reiber is the CEO of Medis Medical Imaging Systems bv, and has a part-time appointment at LUMC as Professor of Medical Imaging. William Wijns is non-executive board member and shareholder of Argonauts Partners, Celyad and Genae Inc. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Author information



Corresponding author

Correspondence to Stylianos A. Pyxaras MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 922 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pyxaras, S.A., Wijns, W., Reiber, J.H.C. et al. Invasive assessment of coronary artery disease. J. Nucl. Cardiol. 25, 860–871 (2018).

Download citation


  • Coronary angiography
  • intravascular ultrasound
  • optical coherence tomography
  • fractional flow reserve