Skip to main content
Log in

Myocardial 123I-metaiodobenzylguanidine imaging in hypertension and left ventricular hypertrophy

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Sympathetic nervous system plays a pivotal role in essential hypertension and in the development of left ventricular hypertrophy. Moreover, cardiac sympathetic dys-regulation has been demonstrated as a key con-causal factor in the genesis and progression of pathologic conditions such as congestive heart failure and ischemic heart disease to which hypertension predisposes as a risk factor. However, despite its fundamental role in cardiac pathophysiology, the evaluation of cardiac sympathetic nervous system has never gained a wide clinical application, remaining mostly a research tool. In this context, nuclear imaging techniques are the only modalities to allow the direct evaluation of cardiac sympathetic nervous integrity, giving the chance to obtain objective measures of the sympathetic tone. This review, while summarizing the general profile of currently available tests for autonomic evaluation, focuses on 123I-metaiodobenzylguanidine nuclear imaging as a preferential tool to assess cardiac sympathetic status. Specifically, the review discusses the available evidence on cardiac 123I-metaiodobenzylguanidine scintigraphy in arterial hypertension and left ventricular hypertrophy and its diagnostic and prognostic potential in congestive heart failure and ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ANS:

Autonomic nervous system

AS:

Aortic stenosis

BRS:

Baroreflex sensitivity

CHF:

Congestive heart failure

CZT:

Cadmium-zinc-telluride

EH:

Essential hypertension

LVH:

Left ventricular hypertrophy

MIBG:

123I-metaiodobenzylguanidine

SNS:

Sympathetic nervous system

SPECT:

Single-photon emission computed tomography

References

  1. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804-14.

    Article  CAS  PubMed  Google Scholar 

  2. Verdecchia P, Angeli F, Achilli P, Castellani C, Broccatelli A, Gattobigio R, et al. Echocardiographic left ventricular hypertrophy in hypertension: Marker for future events or mediator of events? Curr Opin Cardiol. 2007;22:329-34.

    Article  PubMed  Google Scholar 

  3. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161:996-1002.

    Article  CAS  PubMed  Google Scholar 

  4. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet. 2004;364:937-52.

    Article  PubMed  Google Scholar 

  5. Esler M. The sympathetic nervous system in hypertension: Back to the future? Curr Hypertens Rep. 2015;17:11.

    Article  PubMed  Google Scholar 

  6. Raffel DM, Wieland DM. Development of mIBG as a cardiac innervation imaging agent. JACC Cardiovasc Imaging. 2010;3:111-1116.

    Article  PubMed  Google Scholar 

  7. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ Res. 2013;113:739-53.

    Article  CAS  PubMed  Google Scholar 

  8. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004-21.

    Article  CAS  PubMed  Google Scholar 

  9. Mancia G, Mark AL. Arterial baroreflexes in humans. In: Shepherd JT, Abboud FM, editors. Handbook of physiology, section 2: The cardiovascular system. Bethesda: American Physiological Society; 1983. p. 755-93.

    Google Scholar 

  10. Olivari MT, Levine TB, Cohn JN. Abnormal neurohumoral response to nitroprusside infusion in congestive heart failure. J Am Coll Cardiol. 1983;2:411-7.

    Article  CAS  PubMed  Google Scholar 

  11. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478-84.

    Article  PubMed  Google Scholar 

  12. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043-65.

    Article  Google Scholar 

  13. Eckberg DL. Spectral balance: A critical appraisal. Circulation. 1997;96:3224-32.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein DS. Plasma catecholamines and essential hypertension: An analytical review. Hypertension. 1983;5:86-99.

    Article  CAS  PubMed  Google Scholar 

  15. Meredith IT, Friberg P, Jennings GL, Dewar EM, Fazio VA, Lambert GW, et al. Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension. 1991;18:575-82.

    Article  CAS  PubMed  Google Scholar 

  16. Esler M, Kaye D. Measurement of sympathetic nervous system activity in heart failure: The role of norepinephrine kinetics. Heart Fail Rev. 2000;5:17-25.

    Article  CAS  PubMed  Google Scholar 

  17. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560-5.

    Article  PubMed  Google Scholar 

  18. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlöf G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73:913-9.

    Article  PubMed  Google Scholar 

  19. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95:169-75.

    Article  CAS  PubMed  Google Scholar 

  20. Glowniak JV. Cardiac studies with metaiodobenzylguanidine: A critique of methods and interpretation of results. J Nucl Med. 1995;36:2133-7.

    CAS  PubMed  Google Scholar 

  21. Yoh M, Yuasa F, Mimura J, Yokoe H, Kawamura A, Sugiura T, et al. Resting muscle sympathetic nerve activity, cardiac metaiodobenzylguanidine uptake, and exercise tolerance in patients with left ventricular dysfunction. J Nucl Cardiol. 2009;16:244-50.

    Article  PubMed  Google Scholar 

  22. Tsukamoto T, Morita K, Naya M, Inubushi M, Katoh C, Nishijima K, et al. Decreased myocardial beta-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med. 2007;48:1777-82.

    Article  CAS  PubMed  Google Scholar 

  23. Kashihara K, Ohno M, Kawada S, Okumura Y. Reduced cardiac uptake and enhanced washout of 123I-MIBG in pure autonomic failure occurs conjointly with Parkinson’s disease and dementia with Lewy bodies. J Nucl Med. 2006;47:1099-101.

    CAS  PubMed  Google Scholar 

  24. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, ADMIRE-HF Investigators, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212-21.

    Article  PubMed  Google Scholar 

  25. Bravo PE, Lautamäki R, Carter D, Holt DP, Nekolla SG, Dannals RF, et al. Mechanistic insights into sympathetic neuronal regeneration: Multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circ Cardiovasc Imaging. 2015;8:e003507.

    Article  PubMed  Google Scholar 

  26. Gaemperli O, Liga R, Spyrou N, Rosen SD, Foale R, Kooner JS, et al. Myocardial beta-adrenoceptor down-regulation early after infarction is associated with long-term incidence of congestive heart failure. Eur Heart J. 2010;31:1722-9.

    Article  CAS  PubMed  Google Scholar 

  27. Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH. Inverse relationship between cardiac accumulation of meta-[131I]iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med. 1983;24:1127-34.

    CAS  PubMed  Google Scholar 

  28. Gimelli A, Masci PG, Liga R, Grigoratos C, Pasanisi EM, Lombardi M, et al. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: Relationship with myocardial oedema on magnetic resonance. Eur J Nucl Med Mol Imaging. 2014;41:1692-4.

    Article  PubMed  Google Scholar 

  29. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769-77.

    Article  PubMed  Google Scholar 

  30. Sood N, Al Badarin F, Parker M, Pullatt R, Jacobson AF, Bateman TM, et al. Resting perfusion MPI-SPECT combined with cardiac 123I-mIBG sympathetic innervation imaging improves prediction of arrhythmic events in non-ischemic cardiomyopathy patients: Sub-study from the ADMIRE-HF trial. J Nucl Cardiol. 2013;20:813-20.

    Article  PubMed  Google Scholar 

  31. Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551-7.

    Article  PubMed  Google Scholar 

  32. Gimelli A, Menichetti F, Soldati E, Liga R, Vannozzi A, Marzullo P, et al. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: Impact on invasive electrophysiological parameters and ablation procedures. Eur J Nucl Med Mol Imaging. 2016;43:2383-91.

    Article  CAS  PubMed  Google Scholar 

  33. Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: A cardiac CZT study. Eur J Nucl Med Mol Imaging. 2014;41:946-55.

    Article  PubMed  Google Scholar 

  34. Gimelli A, Liga R, Avogliero F, Coceani M, Marzullo P. Relationships between left ventricular sympathetic innervation and diastolic dysfunction: The role of myocardial innervation/perfusion mismatch. J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0753-3.

    Google Scholar 

  35. Tinti E, Positano V, Giorgetti A, Marzullo P. Feasibility of [123I]-meta-iodobenzylguanidine dynamic 3-D kinetic analysis in vivo using a CZT ultrafast camera: Preliminary results. Eur J Nucl Med Mol Imaging. 2014;41:167-73.

    Article  PubMed  Google Scholar 

  36. Francis GS, Cohn JN, Johnson G, Rector TS, Goldman S, Simon A. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 Suppl):VI40-8.

    CAS  PubMed  Google Scholar 

  37. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6:772-84.

    Article  PubMed  Google Scholar 

  38. Nakajima K, Nakata T, Matsuo S, Jacobson AF. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models. Eur Heart J Cardiovasc Imaging. 2016;17:1138-45.

    Article  PubMed  Google Scholar 

  39. Fallen EL, Coates G, Nahmias C, Chirakal R, Beanlands R, Wahl L, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J. 1999;137:863-9.

    Article  CAS  PubMed  Google Scholar 

  40. Abdulghani M, Duell J, Smith M, Chen W, Bentzen SM, Asoglu R, et al. Global and regional myocardial innervation before and after ablation of drug-refractory ventricular tachycardia assessed with 123I-MIBG. J Nucl Med. 2015;56(Suppl 4):52S-8S.

    Article  CAS  PubMed  Google Scholar 

  41. Morimoto S, Terada K, Keira N, Satoda M, Inoue K, Tatsukawa H, et al. Investigation of the relationship between regression of hypertensive cardiac hypertrophy and improvement of cardiac sympathetic nervous dysfunction using iodine-123 metaiodobenzylguanidine myocardial imaging. Eur J Nucl Med. 1996;23:756-61.

    Article  CAS  PubMed  Google Scholar 

  42. Sakata K, Shirotani M, Yoshida H, Kurata C. Comparison of effects of enalapril and nitrendipine on cardiac sympathetic nervous system in essential hypertension. J Am Coll Cardiol. 1998;32:438-43.

    Article  CAS  PubMed  Google Scholar 

  43. Sakata K, Shirotani M, Yoshida H, Nawada R, Obayashi K, Togi K, et al. Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension. Hypertension. 1999;33:1447-52.

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi N, Nakagawa M, Saikawa T, Ooie T, Yufu K, Shigematsu S, et al. Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. J Am Coll Cardiol. 2001;38:232-7.

    Article  CAS  PubMed  Google Scholar 

  45. van Brussel PM, Eeftinck Schattenkerk DW, Dobrowolski LC, de Winter RJ, Reekers JA, Verberne HJ, et al. Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension. Int J Cardiol. 2016;202:609-14.

    Article  PubMed  Google Scholar 

  46. Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan intervention for endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet. 2002;359:995-1003.

    Article  PubMed  Google Scholar 

  47. Sipola P, Vanninen E, Aronen HJ, Lauerma K, Simula S, Jääskeläinen P, et al. Cardiac adrenergic activity is associated with left ventricular hypertrophy in genetically homogeneous subjects with hypertrophic cardiomyopathy. J Nucl Med. 2003;44:487-93.

    PubMed  Google Scholar 

  48. Terai H, Shimizu M, Ino H, Yamaguchi M, Hayashi K, Sakata K, et al. Cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy with malignant ventricular tachyarrhythmias. J Nucl Cardiol. 2003;10:304-10.

    Article  PubMed  Google Scholar 

  49. Fagret D, Wolf JE, Vanzetto G, Borrel E. Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to valvular aortic stenosis. J Nucl Med. 1993;34:57-60.

    CAS  PubMed  Google Scholar 

Download references

Disclosures

All authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Riccardo Liga MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 1196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liga, R., Gimelli, A., Marzullo, P. et al. Myocardial 123I-metaiodobenzylguanidine imaging in hypertension and left ventricular hypertrophy. J. Nucl. Cardiol. 25, 461–470 (2018). https://doi.org/10.1007/s12350-017-1029-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-1029-2

Keywords

Navigation