Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 461–470 | Cite as

Myocardial 123I-metaiodobenzylguanidine imaging in hypertension and left ventricular hypertrophy

  • Riccardo Liga
  • Alessia Gimelli
  • Paolo Marzullo
  • Giuseppe Ambrosio
  • Matteo Cameli
  • Elisabetta Cerbai
  • Stefano Coiro
  • Michele Emdin
  • Rossella Marcucci
  • Doralisa Morrone
  • Alberto Palazzuoli
  • Anna Sonia Petronio
  • Ketty Savino
  • Luigi Padeletti
  • Roberto Pedrinelli
  • On Behalf of Società Italiana di Cardiologia, Sezione Regionale Tosco-Umbra
Review Article

Abstract

Sympathetic nervous system plays a pivotal role in essential hypertension and in the development of left ventricular hypertrophy. Moreover, cardiac sympathetic dys-regulation has been demonstrated as a key con-causal factor in the genesis and progression of pathologic conditions such as congestive heart failure and ischemic heart disease to which hypertension predisposes as a risk factor. However, despite its fundamental role in cardiac pathophysiology, the evaluation of cardiac sympathetic nervous system has never gained a wide clinical application, remaining mostly a research tool. In this context, nuclear imaging techniques are the only modalities to allow the direct evaluation of cardiac sympathetic nervous integrity, giving the chance to obtain objective measures of the sympathetic tone. This review, while summarizing the general profile of currently available tests for autonomic evaluation, focuses on 123I-metaiodobenzylguanidine nuclear imaging as a preferential tool to assess cardiac sympathetic status. Specifically, the review discusses the available evidence on cardiac 123I-metaiodobenzylguanidine scintigraphy in arterial hypertension and left ventricular hypertrophy and its diagnostic and prognostic potential in congestive heart failure and ischemic heart disease.

Keywords

123I-metaiodobenzylguanidine Sympathetic nervous system Arterial hypertension Left ventricular hypertrophy Congestive heart failure 

Abbreviations

ANS

Autonomic nervous system

AS

Aortic stenosis

BRS

Baroreflex sensitivity

CHF

Congestive heart failure

CZT

Cadmium-zinc-telluride

EH

Essential hypertension

LVH

Left ventricular hypertrophy

MIBG

123I-metaiodobenzylguanidine

SNS

Sympathetic nervous system

SPECT

Single-photon emission computed tomography

Notes

Disclosures

All authors have nothing to disclose.

Supplementary material

12350_2017_1029_MOESM1_ESM.ppt (1.2 mb)
Supplementary material 1 (PPT 1196 kb)

References

  1. 1.
    Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804-14.CrossRefPubMedGoogle Scholar
  2. 2.
    Verdecchia P, Angeli F, Achilli P, Castellani C, Broccatelli A, Gattobigio R, et al. Echocardiographic left ventricular hypertrophy in hypertension: Marker for future events or mediator of events? Curr Opin Cardiol. 2007;22:329-34.CrossRefPubMedGoogle Scholar
  3. 3.
    He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161:996-1002.CrossRefPubMedGoogle Scholar
  4. 4.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet. 2004;364:937-52.CrossRefPubMedGoogle Scholar
  5. 5.
    Esler M. The sympathetic nervous system in hypertension: Back to the future? Curr Hypertens Rep. 2015;17:11.CrossRefPubMedGoogle Scholar
  6. 6.
    Raffel DM, Wieland DM. Development of mIBG as a cardiac innervation imaging agent. JACC Cardiovasc Imaging. 2010;3:111-1116.CrossRefPubMedGoogle Scholar
  7. 7.
    Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ Res. 2013;113:739-53.CrossRefPubMedGoogle Scholar
  8. 8.
    Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004-21.CrossRefPubMedGoogle Scholar
  9. 9.
    Mancia G, Mark AL. Arterial baroreflexes in humans. In: Shepherd JT, Abboud FM, editors. Handbook of physiology, section 2: The cardiovascular system. Bethesda: American Physiological Society; 1983. p. 755-93.Google Scholar
  10. 10.
    Olivari MT, Levine TB, Cohn JN. Abnormal neurohumoral response to nitroprusside infusion in congestive heart failure. J Am Coll Cardiol. 1983;2:411-7.CrossRefPubMedGoogle Scholar
  11. 11.
    La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478-84.CrossRefPubMedGoogle Scholar
  12. 12.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043-65.CrossRefGoogle Scholar
  13. 13.
    Eckberg DL. Spectral balance: A critical appraisal. Circulation. 1997;96:3224-32.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldstein DS. Plasma catecholamines and essential hypertension: An analytical review. Hypertension. 1983;5:86-99.CrossRefPubMedGoogle Scholar
  15. 15.
    Meredith IT, Friberg P, Jennings GL, Dewar EM, Fazio VA, Lambert GW, et al. Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension. 1991;18:575-82.CrossRefPubMedGoogle Scholar
  16. 16.
    Esler M, Kaye D. Measurement of sympathetic nervous system activity in heart failure: The role of norepinephrine kinetics. Heart Fail Rev. 2000;5:17-25.CrossRefPubMedGoogle Scholar
  17. 17.
    Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560-5.CrossRefPubMedGoogle Scholar
  18. 18.
    Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlöf G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73:913-9.CrossRefPubMedGoogle Scholar
  19. 19.
    Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95:169-75.CrossRefPubMedGoogle Scholar
  20. 20.
    Glowniak JV. Cardiac studies with metaiodobenzylguanidine: A critique of methods and interpretation of results. J Nucl Med. 1995;36:2133-7.PubMedGoogle Scholar
  21. 21.
    Yoh M, Yuasa F, Mimura J, Yokoe H, Kawamura A, Sugiura T, et al. Resting muscle sympathetic nerve activity, cardiac metaiodobenzylguanidine uptake, and exercise tolerance in patients with left ventricular dysfunction. J Nucl Cardiol. 2009;16:244-50.CrossRefPubMedGoogle Scholar
  22. 22.
    Tsukamoto T, Morita K, Naya M, Inubushi M, Katoh C, Nishijima K, et al. Decreased myocardial beta-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med. 2007;48:1777-82.CrossRefPubMedGoogle Scholar
  23. 23.
    Kashihara K, Ohno M, Kawada S, Okumura Y. Reduced cardiac uptake and enhanced washout of 123I-MIBG in pure autonomic failure occurs conjointly with Parkinson’s disease and dementia with Lewy bodies. J Nucl Med. 2006;47:1099-101.PubMedGoogle Scholar
  24. 24.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, ADMIRE-HF Investigators, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212-21.CrossRefPubMedGoogle Scholar
  25. 25.
    Bravo PE, Lautamäki R, Carter D, Holt DP, Nekolla SG, Dannals RF, et al. Mechanistic insights into sympathetic neuronal regeneration: Multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circ Cardiovasc Imaging. 2015;8:e003507.CrossRefPubMedGoogle Scholar
  26. 26.
    Gaemperli O, Liga R, Spyrou N, Rosen SD, Foale R, Kooner JS, et al. Myocardial beta-adrenoceptor down-regulation early after infarction is associated with long-term incidence of congestive heart failure. Eur Heart J. 2010;31:1722-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH. Inverse relationship between cardiac accumulation of meta-[131I]iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med. 1983;24:1127-34.PubMedGoogle Scholar
  28. 28.
    Gimelli A, Masci PG, Liga R, Grigoratos C, Pasanisi EM, Lombardi M, et al. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: Relationship with myocardial oedema on magnetic resonance. Eur J Nucl Med Mol Imaging. 2014;41:1692-4.CrossRefPubMedGoogle Scholar
  29. 29.
    Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769-77.CrossRefPubMedGoogle Scholar
  30. 30.
    Sood N, Al Badarin F, Parker M, Pullatt R, Jacobson AF, Bateman TM, et al. Resting perfusion MPI-SPECT combined with cardiac 123I-mIBG sympathetic innervation imaging improves prediction of arrhythmic events in non-ischemic cardiomyopathy patients: Sub-study from the ADMIRE-HF trial. J Nucl Cardiol. 2013;20:813-20.CrossRefPubMedGoogle Scholar
  31. 31.
    Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551-7.CrossRefPubMedGoogle Scholar
  32. 32.
    Gimelli A, Menichetti F, Soldati E, Liga R, Vannozzi A, Marzullo P, et al. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: Impact on invasive electrophysiological parameters and ablation procedures. Eur J Nucl Med Mol Imaging. 2016;43:2383-91.CrossRefPubMedGoogle Scholar
  33. 33.
    Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: A cardiac CZT study. Eur J Nucl Med Mol Imaging. 2014;41:946-55.CrossRefPubMedGoogle Scholar
  34. 34.
    Gimelli A, Liga R, Avogliero F, Coceani M, Marzullo P. Relationships between left ventricular sympathetic innervation and diastolic dysfunction: The role of myocardial innervation/perfusion mismatch. J Nucl Cardiol. 2016. doi: 10.1007/s12350-016-0753-3.Google Scholar
  35. 35.
    Tinti E, Positano V, Giorgetti A, Marzullo P. Feasibility of [123I]-meta-iodobenzylguanidine dynamic 3-D kinetic analysis in vivo using a CZT ultrafast camera: Preliminary results. Eur J Nucl Med Mol Imaging. 2014;41:167-73.CrossRefPubMedGoogle Scholar
  36. 36.
    Francis GS, Cohn JN, Johnson G, Rector TS, Goldman S, Simon A. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 Suppl):VI40-8.PubMedGoogle Scholar
  37. 37.
    Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6:772-84.CrossRefPubMedGoogle Scholar
  38. 38.
    Nakajima K, Nakata T, Matsuo S, Jacobson AF. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models. Eur Heart J Cardiovasc Imaging. 2016;17:1138-45.CrossRefPubMedGoogle Scholar
  39. 39.
    Fallen EL, Coates G, Nahmias C, Chirakal R, Beanlands R, Wahl L, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J. 1999;137:863-9.CrossRefPubMedGoogle Scholar
  40. 40.
    Abdulghani M, Duell J, Smith M, Chen W, Bentzen SM, Asoglu R, et al. Global and regional myocardial innervation before and after ablation of drug-refractory ventricular tachycardia assessed with 123I-MIBG. J Nucl Med. 2015;56(Suppl 4):52S-8S.CrossRefPubMedGoogle Scholar
  41. 41.
    Morimoto S, Terada K, Keira N, Satoda M, Inoue K, Tatsukawa H, et al. Investigation of the relationship between regression of hypertensive cardiac hypertrophy and improvement of cardiac sympathetic nervous dysfunction using iodine-123 metaiodobenzylguanidine myocardial imaging. Eur J Nucl Med. 1996;23:756-61.CrossRefPubMedGoogle Scholar
  42. 42.
    Sakata K, Shirotani M, Yoshida H, Kurata C. Comparison of effects of enalapril and nitrendipine on cardiac sympathetic nervous system in essential hypertension. J Am Coll Cardiol. 1998;32:438-43.CrossRefPubMedGoogle Scholar
  43. 43.
    Sakata K, Shirotani M, Yoshida H, Nawada R, Obayashi K, Togi K, et al. Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension. Hypertension. 1999;33:1447-52.CrossRefPubMedGoogle Scholar
  44. 44.
    Takahashi N, Nakagawa M, Saikawa T, Ooie T, Yufu K, Shigematsu S, et al. Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. J Am Coll Cardiol. 2001;38:232-7.CrossRefPubMedGoogle Scholar
  45. 45.
    van Brussel PM, Eeftinck Schattenkerk DW, Dobrowolski LC, de Winter RJ, Reekers JA, Verberne HJ, et al. Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension. Int J Cardiol. 2016;202:609-14.CrossRefPubMedGoogle Scholar
  46. 46.
    Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan intervention for endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet. 2002;359:995-1003.CrossRefPubMedGoogle Scholar
  47. 47.
    Sipola P, Vanninen E, Aronen HJ, Lauerma K, Simula S, Jääskeläinen P, et al. Cardiac adrenergic activity is associated with left ventricular hypertrophy in genetically homogeneous subjects with hypertrophic cardiomyopathy. J Nucl Med. 2003;44:487-93.PubMedGoogle Scholar
  48. 48.
    Terai H, Shimizu M, Ino H, Yamaguchi M, Hayashi K, Sakata K, et al. Cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy with malignant ventricular tachyarrhythmias. J Nucl Cardiol. 2003;10:304-10.CrossRefPubMedGoogle Scholar
  49. 49.
    Fagret D, Wolf JE, Vanzetto G, Borrel E. Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to valvular aortic stenosis. J Nucl Med. 1993;34:57-60.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Riccardo Liga
    • 1
  • Alessia Gimelli
    • 2
  • Paolo Marzullo
    • 2
    • 3
  • Giuseppe Ambrosio
    • 4
  • Matteo Cameli
    • 5
  • Elisabetta Cerbai
    • 6
  • Stefano Coiro
    • 4
  • Michele Emdin
    • 2
  • Rossella Marcucci
    • 7
  • Doralisa Morrone
    • 1
  • Alberto Palazzuoli
    • 8
  • Anna Sonia Petronio
    • 1
  • Ketty Savino
    • 4
  • Luigi Padeletti
    • 7
    • 9
  • Roberto Pedrinelli
    • 1
  • On Behalf of Società Italiana di Cardiologia, Sezione Regionale Tosco-Umbra
  1. 1.Dipartimento di Patologia Chirurgica, Molecolare e dell’Area CriticaUniversità di Pisa MedicaPisaItaly
  2. 2.Fondazione Toscana G. MonasterioPisaItaly
  3. 3.Istituto di Fisiologia ClinicaCNRPisaItaly
  4. 4.Dipartimento di Medicina, Sezione di Cardiologia e Fisiopatologia CardiovascolareUniversità di PerugiaPerugiaItaly
  5. 5.Dipartimento di Biotecnologie Mediche, Cardiologia UniversitariaUniversità di SienaSienaItaly
  6. 6.Dipartimento di Neuroscienze, Area del Farmaco e Salute del Bambino (NEUROFARBA)Università di FirenzeFlorenceItaly
  7. 7.Dipartimento di Medicina Sperimentale e ClinicaUniversità di FirenzeFlorenceItaly
  8. 8.Dipartimento di Medicina InternaUniversità di SienaSienaItaly
  9. 9.IRCCS MultimedicaMilanItaly

Personalised recommendations