Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 394–403 | Cite as

Comparison of left ventricular shape by gated SPECT imaging in diabetic and nondiabetic patients with normal myocardial perfusion: A propensity score analysis

  • Carmela Nappi
  • Valeria Gaudieri
  • Wanda Acampa
  • Roberta Assante
  • Emilia Zampella
  • Ciro Gabriele Mainolfi
  • Mario Petretta
  • Guido Germano
  • Alberto Cuocolo
Original Article

Abstract

Background

Diabetes mellitus induces structural and functional cardiac alterations that can result in heart failure. Left ventricular (LV) shape is a dynamic component of cardiac geometry influencing its contractile function. However, few data are available comparing LV shape index in diabetic and nondiabetic patients without overt coronary artery disease after balancing for coronary risk factors.

Methods

We studied 1168 patients with normal myocardial perfusion and normal LV ejection fraction on stress gated single-photon emission computed tomography (SPECT) imaging. To account for differences in baseline characteristics between diabetic and nondiabetic patients, we created a propensity score-matched cohort considering clinical variables, coronary risk factors, and stress type.

Results

Before matching, diabetic patients were older, had higher prevalence of male gender and coronary risk factors, and higher end-diastolic and end-systolic LV shape index. After matching, all clinical characteristics were comparable between diabetic and nondiabetic patients, but diabetic patients still had higher end-diastolic and end-systolic LV shape index (both P < .001). At multivariable linear regression analysis, diabetes was a strong predictor of end-systolic LV shape index in the overall study population and in the propensity-matched cohort.

Conclusions

Diabetic patients have higher values of LV shape index compared to nondiabetic patients also after balancing clinical characteristics by propensity score analysis. Shape indexes assessment by gated SPECT may be useful for identifying early LV remodeling in patients with diabetes.

Keywords

Diabetes mellitus cardiovascular risk factors left ventricular shape index gated SPECT 

Abbreviations

LV

Left ventricular

SPECT

Single-photon emission computed tomography

SI

Shape index

EF

Ejection fraction

CAD

Coronary artery disease

Spanish Abstract

Antecedentes

La Diabetes Mellitus induce alteraciones cardiacas a nivel estructural y funcional que pueden resultar en insuficiencia cardiaca. La forma ventricular izquierda (VI) es un componente dinámico de la geometría cardiaca que influye en su función contráctil. Sin embargo, existen pocos datos disponibles que comparen el Índice de Forma VI en pacientes diabéticos y no diabéticos sin enfermedad arterial coronaria después de equilibrar los factores de riesgo coronario.

Métodos

Estudiamos 1168 pacientes con perfusión miocárdica normal así como fracción de eyección del ventrículo izquierdo normal en la fase de estrés del gated SPECT. Para establecer las diferencias en las características basales entre pacientes diabéticos y no diabéticos, se creó una cohorte de puntuación de propensión teniendo en cuenta las variables clínicas, factores de riesgo coronario y tipo de estrés.

Resultados

Antes del emparejamiento, los pacientes diabéticos eran mayores, tenían mayor prevalencia de sexo masculino, factores de riesgo coronario así como un mayor Índice de Forma VI tele-diastólico y tele-sistólico. Después del emparejamiento, todas las características clínicas fueron comparables entre los pacientes diabéticos y no diabéticos, pero los pacientes diabéticos continuaron teniendo un mayor Índice de Forma VI al final de la sístole y diástole (p < 0.001). En el análisis de regresión lineal multivariable, la diabetes fue un fuerte predictor del Índice de Forma VI tele-sistólico en el total de la población de estudio y en la cohorte de propensión.

Conclusiones

Los pacientes diabéticos tienen mayores valores del Índice de Forma VI comparado con los pacientes no diabéticos incluso después de equilibrar las características mediante un análisis de puntaje de propensión. La evaluación de los Índices de Forma mediante gated SPECT pueden ser de utilidad para identificar de manera temprana el remodelado del ventrículo izquierdo en pacientes con diabetes.

Chinese Abstract

背景

糖尿病可诱导结构性和功能性的心脏病变, 并引起心衰。左心室 (LV) 形状是心脏几何结构的一个动态组成成分, 可影响心脏的收缩功能。然而, 对于无明显冠心病的糖尿病和非糖尿病病人, 尚无平衡冠心病风险因素后, 关于两者 LV 形状指数比较的报道。

方法

我们利用单光子发射计算机断层显像技术 (SPECT) 研究了 1168 名负荷心肌灌注显像正常, 且 LV 射血分数正常的病人。为了说明糖尿病与非糖尿病病人基线特征的不同, 我们建立了一个倾向评分匹配队列来比较临床变量、冠心病危险因素和负荷类型。

结果

匹配前, 糖尿病病人年龄较大, 男性比率和冠心病风险因素更多, 且收缩末期和舒张末期的 LV 形状指数更大; 匹配后, 糖尿病和非糖尿病病人的所有临床特征均无差异, 但糖尿病病人仍有较高的收缩末期和舒张末期 LV 形状指数 (p < 0.001)。多变量线性回归分析显示, 在所有研究对象及倾向评分匹配队列中, 糖尿病是收缩末期 LV 形状指数的一个强预测因子。

结论

利用倾向评分匹配临床特征后, 糖尿病较非糖尿病病人有较高的 LV 形状指数。门控 SPECT 测定 LV 形状指数, 可用于糖尿病病人早期 LV 重构的识别。

French Abstract

Contexte

La configuration du ventricule gauche (VG) est une composante dynamique importante du système cardio-vasculaire et sa géométrie influence sa fonction contractile. Le diabète sucré induit des altérations cardiaques structurelles et fonctionnelles qui peuvent induire une insuffisance cardiaque. Peu de données comparant la configuration du VG sont disponibles chez les patients diabétiques et non diabétiques sans maladie coronarienne manifeste.

Méthodes

Nous avons étudié 1,168 patients avec perfusion myocardique et éjection ventriculaire gauche normales obtenues par scintigraphie tomographique myocardique à émission de photons (gated SPECT). De manière à tenir compte des différences dans les caractéristiques de base des patients diabétiques et non diabétiques, les patients furent classifiés et analysés en fonction de leur facteurs de risque coronarien et du type d’épreuve d’effort subi.

Résultats

Avant correction pour facteur de risques et type d’épreuve d’effort, les patients diabétiques étaient plus âgés, avaient une plus grande prévalence masculine, des facteurs de risque coronariens plus important et des indices de configuration diastolique et systolique du VG superieures plus élevés que les patients non diabétiques. Après correction, l’ensemble des paramètres cliniques étaient comparables entre chez les patients diabétiques et non-diabétiques. Néanmoins les indices de configuration diastolique et systolique du VG restaient supérieurs (p < 0.001) chez les patients diabétiques. Après analyse de régression linéaire multivariée, le diabète s’avérait s’est avéré un indicateur important des indices de configuration diastolique et systolique du VG dans les groupes étudies avant et après correction.

Conclusions

Les indices de configuration systoliques et diastoliques du VG chez les patients diabétiques sont plus élevés que chez les patients non diabétiques. L’évaluation des indices de configuration du VG par SPECT peut être utile pour l’identification du remodelage précoce du VG chez les patients diabétiques.

Notes

Disclosure

The authors have indicated that they have no financial conflict of interest.

Supplementary material

12350_2017_1009_MOESM1_ESM.pptx (987 kb)
Supplementary material 1 (PPTX 988 kb)

References

  1. 1.
    Koitabashi N, Kass DA. Reverse remodeling in heart failure-mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2011;9:147-57.CrossRefPubMedGoogle Scholar
  2. 2.
    Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383:1933-43.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Udelson JE. Left ventricular shape: the forgotten stepchild of remodeling parameters. JACC Heart Fail. 2017;5:179-81.CrossRefPubMedGoogle Scholar
  4. 4.
    Levelt E, Mahmod M, Piechnik SK, Ariga R, Francis JM, Rodgers CT, et al. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes. 2016;65:44-52.PubMedGoogle Scholar
  5. 5.
    Chong CR, Clarke K, Levelt E. Metabolic remodeling in diabetic cardiomyopathy. Cardiovasc Res. 2017;113:422-30.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Walker AM, Patel PA, Rajwani A, Groves D, Denby C, Kearney L, et al. Diabetes mellitus is associated with adverse structural and functional cardiac remodelling in chronic heart failure with reduced ejection fraction. Diab Vasc Dis Res. 2016;13:331-40.CrossRefPubMedGoogle Scholar
  7. 7.
    Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med. 2000;41:712-9.PubMedGoogle Scholar
  8. 8.
    Abidov A, Slomka PJ, Nishina H, Hayes SW, Kang X, Yoda S, et al. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: Initial description of a new variable. J Nucl Cardiol. 2006;13:652-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Rosendorff C, Black HR, Cannon CP, Gersh BJ, Gore J, Izzo JL Jr, et al. Treatment of hypertension in the prevention and management of ischemic heart disease: a scientific statement from the American Heart Association Council for High Blood Pressure Research and the Councils on Clinical Cardiology and Epidemiology and Prevention. Circulation. 2007;115:2761-88.CrossRefPubMedGoogle Scholar
  10. 10.
    Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, European Association of Nuclear Medicine (EANM), et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT, CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;2015(42):1929-40.CrossRefGoogle Scholar
  11. 11.
    Petretta M, Acampa W, Evangelista L, Daniele S, Ferro A, Cuocolo A. Impact of inducible ischemia by stress SPECT (IDIS) investigators. Impact of inducible ischemia by stress SPECT in cardiac risk assessment in diabetic patients: Rationale and design of a prospective, multicenter trial. J Nucl Cardiol. 2008;15:100-4.CrossRefPubMedGoogle Scholar
  12. 12.
    Acampa W, Petretta M, Evangelista L, Daniele S, Xhoxhi E, De Rimini ML, et al. Myocardial perfusion imaging and risk classification for coronary heart disease in diabetic patients. The IDIS study: A prospective, multicentre trial. Eur J Nucl Med Mol Imaging. 2012;39:387-95.CrossRefPubMedGoogle Scholar
  13. 13.
    Akincioglu C, Berman DS, Nishina H, Kavanagh PB, Slomka PJ, Abidov A, et al. Assessment of diastolic function using 16-frame 99mtc-sestamibi gated myocardial perfusion SPECT: Normal values. J Nucl Med. 2005;46:1102-8.PubMedGoogle Scholar
  14. 14.
    Acampa W, Petretta M, Daniele S, Del Prete G, Assante R, Zampella E, et al. Incremental prognostic value of stress myocardial perfusion imaging in asymptomatic diabetic patients. Atherosclerosis. 2013;227:307-12.CrossRefPubMedGoogle Scholar
  15. 15.
    Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138-47.PubMedGoogle Scholar
  16. 16.
    Germano G, Berman DS. On the accuracy and reproducibility of quantitative gated myocardial perfusion SPECT. J Nucl Med. 1999;40:810-3.PubMedGoogle Scholar
  17. 17.
    Leuven E, Sianesi B. PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. http://ideas.repec.org/c/boc/bocode/s432001.html, version 4.0.11, Oct. 22, 2014. Statistical Software Components (SSC), Boston College Department of Economics.
  18. 18.
    Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083-107.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    DiPrete TA, Gangl M. Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimators and instrumental variables estimation with imperfect instruments. Sociol Methodol. 2004;34:271-310.CrossRefGoogle Scholar
  20. 20.
    Hölscher ME, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci. 2016;17:2036.CrossRefGoogle Scholar
  21. 21.
    Lombardi C, Spigoni V, Gorga E, Dei Cas A. Novel insight into the dangerous connection between diabetes and heart failure. Herz. 2016;41:201-7.CrossRefPubMedGoogle Scholar
  22. 22.
    Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213-23.CrossRefPubMedGoogle Scholar
  23. 23.
    An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006;291:H1489-506.CrossRefPubMedGoogle Scholar
  24. 24.
    Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diab Care. 2004;27:1879-84.CrossRefGoogle Scholar
  25. 25.
    Douglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1989;13:311-5.CrossRefPubMedGoogle Scholar
  26. 26.
    Maffessanti F, Caiani EG, Tamborini G, Muratori M, Sugeng L, Weinert L, et al. Serial changes in left ventricular shape following early mitral valve repair. Am J Cardiol. 2010;106:836-42.CrossRefPubMedGoogle Scholar
  27. 27.
    St John Sutton M, Linde C, Gold MR, Abraham WT, Ghio S, Cerkvenik J, et al. Left ventricular architecture, long-term reverse remodeling, and clinical outcome in mild heart failure with cardiac resynchronization: results from the REVERSE trial. JACC Heart Fail. 2017;5:169-78.CrossRefPubMedGoogle Scholar
  28. 28.
    Lorenzo-Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc Diabetol. 2017;16:28.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Assante R, Acampa W, Zampella E, Arumugam P, Nappi C, Gaudieri V, et al. Coronary atherosclerotic burden vs. coronary vascular function in diabetic and nondiabetic patients with normal myocardial perfusion: A propensity score analysis. Eur J Nucl Med Mol Imaging. 2017;44(7):1129-35.CrossRefPubMedGoogle Scholar
  30. 30.
    Ernande L, Rietzschel ER, Bergerot C, De Buyzere ML, Schnell F, Groisne L, et al. Impaired myocardial radial function in asymptomatic patients with type 2 diabetes mellitus: A speckle-tracking imaging study. J Am Soc Echocardiogr. 2010;23:1266-72.CrossRefPubMedGoogle Scholar
  31. 31.
    Ernande L, Bergerot C, Girerd N, Thibault H, Davidsen ES, Gautier Pignon-Blanc P, et al. Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr. 2014;27:479-88.CrossRefPubMedGoogle Scholar
  32. 32.
    Gimelli A, Liga R, Clemente A, Marras G, Kusch A, Marzullo P. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling. J Nucl Cardiol. 2017. doi: 10.1007/s12350-017-0777-3.Google Scholar
  33. 33.
    Medrano-Gracia P, Cowan BR, Ambale-Venkatesh B, Bluemke DA, Eng J, Finn JP, et al. J Cardiovasc Magn Reson. 2014;16:56.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. Small artery structure in hypertension: Dual process of remodeling and growth. Hypertension. 1993;21:391-7.CrossRefPubMedGoogle Scholar
  35. 35.
    Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, et al. Reference values of cardiac volumes, dimensions, and new functional parameters by MR: A multicenter, multivendor study. J Magn Reson Imaging. 2017;45:1055-67.CrossRefPubMedGoogle Scholar
  36. 36.
    Muraru D, Badano LP, Peluso D, Dal Bianco L, Casablanca S, Kocabay G, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr. 2013;26:618-28.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Carmela Nappi
    • 1
  • Valeria Gaudieri
    • 2
  • Wanda Acampa
    • 1
    • 2
  • Roberta Assante
    • 1
  • Emilia Zampella
    • 1
  • Ciro Gabriele Mainolfi
    • 1
  • Mario Petretta
    • 3
  • Guido Germano
    • 4
    • 5
  • Alberto Cuocolo
    • 1
  1. 1.Department of Advanced Biomedical SciencesUniversity Federico IINaplesItaly
  2. 2.Institute of Biostructure and BioimagingNational Council of ResearchNaplesItaly
  3. 3.Department of Translational Medical SciencesUniversity Federico IINaplesItaly
  4. 4.Department of MedicineCedars-Sinai Medical CenterLos AngelesUSA
  5. 5.David Geffen School of MedicineUCLALos AngelesUSA

Personalised recommendations