Skip to main content
Log in

Detection and quantitation of right ventricular reversible perfusion defects by stress SPECT myocardial perfusion imaging: A proof-of-principle study

  • Brief Report
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

In patients with right dominant coronary circulation, the right ventricular (RV) myocardium and the inferior region of the left ventricular (LV) myocardium share a common source of blood flow. We hypothesized that stress/rest SPECT myocardial perfusion imaging (MPI) could detect reversible perfusion defects in the RV in some patients with LV inferior wall perfusion abnormalities.

Material and Methods

We identified 2 groups of patients with LV inferior wall perfusion defects (with or without defects in other regions of LV myocardium) from our database. Patients in group 1 (n = 17) had reversible perfusion defects in the RV free wall by visual analysis, while patients in group 2 (n = 17) did not. The images were processed with filtered back projection and, separately, with iterative reconstruction. The images were then re-processed using an automated quantitative software that is specifically designed to include the RV in the region of interest.

Results

There were 76% men in group 1 and 94% in group 2 (P <0.05). The mean age was 65±20 in group 1 vs. 63±18 years in group 2 (P < 0.05). The stress type was exercise in 30% in group 1 and 35% in group 2, with the remaining patients studied with pharmacological stress testing (P = NS). The presence of RV reversible perfusion defects using filtered back projection was more evident in 13 patients (75%), while it was better seen with iterative reconstruction in 4 patients (25%). By automated analysis, the RV reversible perfusion defect size was 19 ± 14% of RV myocardium.

Conclusion

This proof-of-principle study demonstrates that reversible RV perfusion defects suggestive of ischemia can be detected by SPECT myocardial perfusion imaging in some patients with LV inferior ischemia by visual analysis and can be quantitated by automated programs. Further studies on the diagnostic and prognostic relevance of assessing RV ischemia on SPECT MPI are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Abbreviations

HF:

Heart failure

RV:

Right ventricle/ventricular

ROI:

Region of interest

LV:

left ventricle/ventricular

LAD:

Left anterior descending artery

LCX:

Left circumflex coronary artery

RCA:

Right coronary artery

SPECT:

Single photon emission tomography

MPI:

Myocardial perfusion imaging

MBF:

myocardial blood flow

CAD:

Coronary artery disease

CABG:

Coronary artery bypass grafting

PCI:

Percutaneous intervention

References

  1. Kessler RM, Ellis JR Jr, Eden M. Analysis of emission tomographic scan data: Limitations imposed by resolution and background. J Comput Assist Tomogr 1984;8:514-22.

    Article  CAS  PubMed  Google Scholar 

  2. Gomez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martinez ML, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol 2001;38:1137-42.

    Article  CAS  PubMed  Google Scholar 

  3. Ohira H, Beanlands RS, Davies RA, Mielniczuk L. The role of nuclear imaging in pulmonary hypertension. J Nucl Cardiol 2015;22:141-57.

    Article  CAS  PubMed  Google Scholar 

  4. Manno BV, Iskandrian AS, Hakki AH. Right ventricular function: Methodologic and clinical considerations in noninvasive scintigraphic assessment. J Am Coll Cardiol 1984;3:1072-81.

    Article  CAS  PubMed  Google Scholar 

  5. Filippatos GS, Desai RV, Ahmed MI, Fonarow GC, Love TE, Aban IB, et al. Hypoalbuminaemia and incident heart failure in older adults. Eur J Heart Fail 2011;13:1078-86.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kim J, Di Franco A, Seoane T, Srinivasan A, Kampaktsis PN, Geevarghese A, et al. Right ventricular dysfunction impairs effort tolerance independent of left ventricular function among patients undergoing exercise stress myocardial perfusion imaging. Circ Cardiovasc Imaging 2016. doi:10.1161/CIRCIMAGING.116.005115.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rallidis LS, Makavos G, Nihoyannopoulos P. Right ventricular involvement in coronary artery disease: Role of echocardiography for diagnosis and prognosis. J Am Soc Echocardiogr 2014;27:223-9.

    Article  PubMed  Google Scholar 

  8. Sabe MA, Sabe SA, Kusunose K, Flamm SD, Griffin BP, Kwon DH. Predictors and prognostic significance of right ventricular ejection fraction in patients with ischemic cardiomyopathy. Circulation 2016;134:656-65.

    Article  PubMed  Google Scholar 

  9. Valsangiacomo Buechel ER, Mertens LL. Imaging the right heart: The use of integrated multimodality imaging. Eur Heart J 2012;33:949-60.

    Article  PubMed  Google Scholar 

  10. Williams KA, Schneider CM. Increased stress right ventricular activity on dual isotope perfusion SPECT: A sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol 1999;34:420-7.

    Article  CAS  PubMed  Google Scholar 

  11. Schofer J, Spielman R, Bleifeld W, Montz R, Mathey G. Scintigraphic evidence that the right ventricular myocardium tolerates ischaemia better than the left ventricular myocardium. Eur Heart J 1985;6:751-8.

    Article  CAS  PubMed  Google Scholar 

  12. Travin MI, Malkin RD, Garber CE, Messinger DE, Cloutier DJ, Heller GV. Prevalence of right ventricular perfusion defects after inferior myocardial infarction assessed by low-level exercise with technetium 99m sestamibi tomographic myocardial imaging. Am Heart J 1994;127:797-804.

    Article  CAS  PubMed  Google Scholar 

  13. Hage FG, Ghimire G, Lester D, McKay J, Bleich S, El-Hajj S, et al. The prognostic value of regadenoson myocardial perfusion imaging. J Nucl Cardiol 2015;22:1214-21.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Aggarwal H, AlJaroudi WA, Mehta S, Mannon R, Heo J, Iskandrian AE, et al. The prognostic value of left ventricular mechanical dyssynchrony using gated myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol 2014;21:739-46.

    Article  PubMed  Google Scholar 

  15. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.

    Article  PubMed  Google Scholar 

  16. Iskandrian AE, Garcia EV. Nuclear cardiac imaging: Principles and applications. 5th ed. Oxford: Oxford University Press; 2016.

    Google Scholar 

  17. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.

    CAS  PubMed  Google Scholar 

  18. Slomka PJ, Nishina H, Berman DS, Kang X, Friedman JD, Hayes SW, et al. Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia. J Nucl Med 2004;45:183-91.

    PubMed  Google Scholar 

  19. DePuey EG, Jones ME, Garcia EV. Evaluation of right ventricular regional perfusion with technetium-99m-sestamibi SPECT. J Nucl Med 1991;32:1199-205.

    CAS  PubMed  Google Scholar 

  20. Farag AA, Andrikopoulou E, Iskandrian AE, Germano G, Hage FG. Detection of right ventricular ischemia by SPECT myocardial perfusion imaging. J Nucl Cardiol 2017;24:317-8.

    Article  PubMed  Google Scholar 

  21. Chiba J, Takeishi Y, Abe S, Tomoike H. Visualisation of exercise-induced ischaemia of the right ventricle by thallium-201 single photon emission computed tomography. Heart 1997;77:40-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Iskandrian AE, Hage FG, Shaw LJ, Mahmarian JJ, Berman DS. Serial myocardial perfusion imaging: Defining a significant change and targeting management decisions. JACC Cardiovasc Imaging 2014;7:79-96.

    Article  PubMed  Google Scholar 

  23. El-Hajj S, AlJaroudi WA, Farag A, Bleich S, Manaoragada P, Iskandrian AE, et al. Effect of changes in perfusion defect size during serial regadenoson myocardial perfusion imaging on cardiovascular outcomes in high-risk patients. J Nucl Cardiol 2016;23:101-12.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. Hage reports research grant support from Astellas Pharma. Some authors (GG, PBK) receive royalties from Cedars-Sinai Medical Center for algorithms incorporated in commercially distributed software that performs automatic quantification of perfusion, function and other cardiac parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi G. Hage MD, FASNC.

Additional information

The authors of this article have provided a Power Point file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by guest editor Alberto Cuocolo, MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, A.A., Heo, J., Tauxe, L. et al. Detection and quantitation of right ventricular reversible perfusion defects by stress SPECT myocardial perfusion imaging: A proof-of-principle study. J. Nucl. Cardiol. 26, 266–271 (2019). https://doi.org/10.1007/s12350-017-0954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0954-4

Keywords

Navigation