Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 433–440 | Cite as

PET/CTA detection of muscle inflammation related to cholesterol crystal emboli without arterial obstruction

  • M. Hassan Pervaiz
  • Sridevi Durga
  • Abed Janoudi
  • Kevin Berger
  • George S. Abela
Original Article

Abstract

Background

PET/CTA was used to evaluate the effect of cholesterol crystal emboli (CCE) on muscle injury. Cholesterol crystals (CCs) released during plaque rupture travel downstream and lodge in muscle triggering inflammation and tissue injury.

Methods

Thigh muscles in three groups of rabbits (n = 22) were studied after intra-arterial injection of CCs, Group I (n = 10); polystyrene microspheres, Group II (n = 5); or normal saline, Group III (n = 7). After 48 hours, muscle inflammation and injury were measured by fluorodeoxy-glucose uptake using PET/CTA, serum tissue factor (TF), and creatinine phosphokinase (CPK). Macrophages were stained with RAM11 and CCs with Bodipy.

Results

SUVmax of thigh muscles was greater for Group I vs Group II and III (0.40 ± 0.16 vs 0.21 ± 0.11, P = .038 and 0.23 ± 0.06, P = .036). CPK levels rose significantly in Group I vs Group II and III (6.7 ± 6.0 vs 0.6 ± 0.4, P = .007 and 0.9 ± 0.4 mg·dL−1, P = .023). No arterial thrombosis was detected by CTA or histology of embolized arteries and TF did not rise significantly. There were extensive macrophage infiltrates surrounding muscle necrosis in Group I only.

Conclusions

Cholesterol crystal emboli triggered muscle inflammation and necrosis with an intact circulation. PET/CTA may help in the early detection of inflammation caused by CCs.

Keywords

PET/CTA 18F-fluorodeoxyglucose (18FDG) cholesterol crystal emboli myositis inflammation 

Abbreviations

CCs

Cholesterol crystals

CCE

Cholesterol crystal embolization

CPK

Creatinine phosphokinase

PET/CTA

Positron emission tomography and computed tomography angiography

LM

Light microscopy

SUVmax

Maximum standardized uptake values

MS

Microspheres

SAL

Saline

SEM

Scanning electron microscopy

TF

Serum tissue factor

Notes

Acknowledgments

The authors thank Ruiping Huang, Tracy Needham, Jeremy Williams, and Michelle Bengel for technical support. We also thank Melinda Frame, PhD, Center for Advanced Microscopy and Amy Porter, HT, QIHC, Investigative Histopathology Laboratory, Michigan State University, East Lansing, MI. Support was provided in part from Michigan State University and Edward W. Sparrow Hospital, Lansing, MI.

Disclosures

Dr. G.S. Abela is a recipient of grants from Merck and speaker for Amgen and Daiichi Sankyo. Dr. K. Berger is recipient of grants from Merck and Janssen. He is a speaker for Cardinal Health and Educational Symposia. For all remaining authors, conflict of interest is none declared.

References

  1. 1.
    Kronzon I, Saric M. Cholesterol embolization syndrome. Circulation 2010;122:631-41.CrossRefPubMedGoogle Scholar
  2. 2.
    Hollenshorst RW. Vascular status of patients who have cholesterol emboli in the retina. Am J Ophthalmol 1966;61:1159-65.CrossRefGoogle Scholar
  3. 3.
    Pascual M, Baumgartner JM, Bounameaux H. Stroke secondary to multiple spontaneous cholesterol emboli. Vasa 1991;20:74-7.PubMedGoogle Scholar
  4. 4.
    Edwards MS, Corriere MA, Craven TE, Pan XM, Rapp JH, Pearce JD, et al. Atheroembolism during percutaneous renal artery revascularization. J Vasc Surg 2007;46:55-61.CrossRefPubMedGoogle Scholar
  5. 5.
    Ghanem F, Vodnala D, Kalavakunta J, et al. Cholesterol crystal embolization following plaque rupture: A systemic disease with unusual features. J Biomed Res 2017;31:1-13.Google Scholar
  6. 6.
    Düwell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind F, et al. NLRP3 Inflamasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease. Nature 2010;464:1357-62.CrossRefGoogle Scholar
  7. 7.
    Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006;440:237-41.CrossRefPubMedGoogle Scholar
  8. 8.
    Geng Y-J, Phillips JE, Mason RP, Casscells SW. Cholesterol crystallization and macrophage apoptosis: Implication for atherosclerotic plaque instability and rupture. Biochem Pharm 2003;66:1485-92.CrossRefPubMedGoogle Scholar
  9. 9.
    Kellner-Weibel G, Geng YJ, Rothblat GH. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis 1999;146:309-19.CrossRefPubMedGoogle Scholar
  10. 10.
    Gadeela N, Rubinstein J, Tamhane U, Huang R, Pathak DR, Hosein H-A, et al. The impact of circulating cholesterol crystals on vasomotor function: Implications for no-reflow phenomenon. J Am Coll Cardiol Interv 2011;4:521-9.CrossRefGoogle Scholar
  11. 11.
    Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: Relation to epicardial plaque histopathology. J Am Coll Cardiol 2009;54:2167-73.CrossRefPubMedGoogle Scholar
  12. 12.
    Janoudi A, Shamoun F, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J 2016;37:1959-67.CrossRefPubMedGoogle Scholar
  13. 13.
    Small D. Handbook of lipid research: The physical chemistry of lipids from alkanes to phospholipids. New York: Plenum Press; 1986.Google Scholar
  14. 14.
    Felton CV, Crook D, Davies MJ, Oliver MF. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 1997;17:1337-45.CrossRefPubMedGoogle Scholar
  15. 15.
    Elizabeth A, Joseph C, Ittyachen MA. Growth and microtopographical studies of gel grown cholesterol crystals. Bull Matter Sci 2001;24:431-4.CrossRefGoogle Scholar
  16. 16.
    Lundberg B. Chemical composition and physical state of lipid deposits in Atherosclerosis. Atherosclerosis 1985;5:93-110.CrossRefGoogle Scholar
  17. 17.
    Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Non-invasive detection and localization of vulnerable plaque and arterial thrombosis using CTA/PET. Circulation 2008;117:2061-70.CrossRefPubMedGoogle Scholar
  18. 18.
    Nasiri M, Janoudi A, Vanderberg A, Frame M, Flegler C, Flegler S, et al. Role of cholesterol crystals in atherosclerosis is unmasked by altering tissue preparation methods. Micros Res Technol 2015;78:969-74.CrossRefGoogle Scholar
  19. 19.
    Abela GS, Aziz K, Vedre A, Pathak D, Talbott JD, DeJong J. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol 2009;103:959-68.CrossRefPubMedGoogle Scholar
  20. 20.
    Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. J Am Coll Cardiol Imaging 2010;3:388-97.CrossRefGoogle Scholar
  21. 21.
    Patel R, Janoudi A, Vedre A, Aziz K, Tamhane U, Rubinstein J, et al. Plaque rupture and thrombosis is reduced by lowering cholesterol levels and crystallization with ezetimibe and is correlated with FDG-PET. Arterioscler Thromb Vasc Biol 2011;31:2007-14.CrossRefPubMedGoogle Scholar
  22. 22.
    Rapp JH, Pan XM, Neumann M, Hong M, Hollenbeck K, Liu J. Microemboli composed of cholesterol crystals disrupt the blood-brain barrier and reduce cognition. Stroke 2008;39:2354-61.CrossRefPubMedGoogle Scholar
  23. 23.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock L, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008;9:847-56.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 Inflammasome sensing of asbestos and silica. Science 2008;320:674-7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Peeters PM, Perkins TN, Wouters EFM, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part. Fibre Toxicol 2013;10:3.CrossRefGoogle Scholar
  26. 26.
    Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem 2015;290:25322-32.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Reininger AJ, Bernlochner I, Penz SM, Ravanat C, Smethurst P, Farndale RW, et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol 2010;55:1147-58.CrossRefPubMedGoogle Scholar
  28. 28.
    Niccoli G, Scalone G, Crea F. Acute myocardial infarction with no obstructive coronary atherosclerosis: mechanisms and management. Eur Heart J 2015;36:475-81.CrossRefPubMedGoogle Scholar
  29. 29.
    Haygood TA, Fessel WJ, Strange DA. Atheromatous microembolism simulating polymyositis. J Am Med Assoc 1968;203:423-5.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • M. Hassan Pervaiz
    • 1
  • Sridevi Durga
    • 1
  • Abed Janoudi
    • 1
  • Kevin Berger
    • 2
  • George S. Abela
    • 1
    • 3
    • 4
  1. 1.Division of Cardiology, Department of MedicineMichigan State UniversityEast LansingUSA
  2. 2.Department of RadiologyMichigan State UniversityEast LansingUSA
  3. 3.Division of Pathology, Department of PhysiologyMichigan State UniversityEast LansingUSA
  4. 4.Michigan State UniversityB208 Clinical CenterEast LansingUSA

Personalised recommendations