Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation 2013;127:e6-245.
Article
Google Scholar
Chest Pain of Recent Onset. Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. London: National Clinical Guideline Centre for Acute and Chronic Conditions; 2010.
Google Scholar
Demir OM, Alfakih K, Plein S. Current international guidelines for the investigation of patients with suspected coronary artery disease. Eur Heart J Cardiovasc Imaging 2014;15:1422-4.
Article
Google Scholar
Miller TD, Askew JW, Anavekar NS. Noninvasive stress testing for coronary artery disease. Heart Fail Clin 2016;12:65-82.
Article
Google Scholar
Cubukcu A, Murray I, Anderson S. What’s the risk? Assessment of patients with stable chest pain. Echo Res Pract 2015;2:41-8.
Article
Google Scholar
Cotarlan V, Ho D, Pineda J, Qureshi A, Shirani J. Impact of clinical predictors and routine coronary artery disease testing on outcome of patients admitted to chest pain decision unit. Clin Cardiol 2014;37:146-51.
Article
Google Scholar
Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med 2000;342:1163-70.
CAS
Article
Google Scholar
Herren KR, Mackway-Jones K. Emergency management of cardiac chest pain: A review. Emerg Med J 2001;18:6-10.
CAS
Article
Google Scholar
Chou R. Cardiac screening with electrocardiography, stress echocardiography, or myocardial perfusion imaging: Advice for high-value care from the American College of Physicians. Ann Intern Med 2015;162:438-47.
Article
Google Scholar
Freeman RV, Eagle KA, Bates ER, Werns SW, Kline-Rogers E, Karavite D, et al. Comparison of artificial neural networks with logistic regression in prediction of in-hospital death after percutaneous transluminal coronary angioplasty. Am Heart J 2000;140:511-20.
CAS
Article
Google Scholar
Isma’eel HA, Cremer PC, Khalaf S, Almedawar MM, Elhajj IH, Sakr GE, et al. Artificial neural network modeling enhances risk stratification and can reduce downstream testing for patients with suspected acute coronary syndromes, negative cardiac biomarkers, and normal ECGs. Int J Cardiovasc Imaging 2015;32:687-96.
Article
Google Scholar
Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300:1350-8.
CAS
Article
Google Scholar
Morise AP, Detrano R, Bobbio M, Diamond GA. Development and validation of a logistic regression-derived algorithm for estimating the incremental probability of coronary artery disease before and after exercise testing. J Am Coll Cardiol 1992;20:1187-96.
CAS
Article
Google Scholar
Genders TSS, Steyerberg EW, Alkadhi H, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J 2011;32:1316-30.
Article
Google Scholar
Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Guidelines on the management of stable angina pectoris. Executive summary. Rev esp Cardiol 2006;59:919-70.
Article
Google Scholar
Hagan MT, Demuth HB, Beale MH. Neural network design. Boston: PWS Publishing Co.; 1996.
Google Scholar
Scales LE. Introduction to non-linear optimization. London: MacMillan, City and Guilds; 1985.
Book
Google Scholar
CaEP Clopper. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934;4:404-13.
Google Scholar
Blakeley DD, Oddone EZ, Hasselblad V, Simel DL, Matchar DB. Noninvasive carotid artery testing. A meta-analytic review. Ann Intern Med 1995;122:360-7.
CAS
Article
Google Scholar
Altman DG, Bland JM. Diagnostic tests 2: Predictive values. BMJ 1994;309:102.
CAS
Article
Google Scholar
Isma’eel H, Sakr, G. ANN risk model to predict ischemia from stress imaging. Université Saint-Joseph. 2016. https://cimti.usj.edu.lb/files/VMP/StressImaging/index.html.
Isma’eel HA, Sakr GE, Habib RH, Almedawar MM, Zgheib NK, Elhajj IH. Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method. Eur J Clin Pharmacol 2014;70:265-73.
Article
Google Scholar
Wise ES, Hocking KM, Brophy CM. Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network. J Vasc Surg 2015;62:8-15.
Article
Google Scholar
Purwanto E, Eswaran C, Logeswaran R, Abdul Rahman AR. Prediction models for early risk detection of cardiovascular event. J Med Syst 2012;36:521-31.
CAS
Article
Google Scholar
Diamond GA, Staniloff HM, Forrester JS, Pollock BH, Swan HJ. Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol 1983;1:444-55.
CAS
Article
Google Scholar
Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND, et al. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol 2011;57:1622-32.
CAS
Article
Google Scholar
Cremer PC, Khalaf S, Agarwal S, Mayer-Sabik E, Ellis SG, Menon V, et al. Myocardial perfusion imaging in emergency department patients with negative cardiac biomarkers: Yield for detecting ischemia, short-term events, and impact of downstream revascularization on mortality. Circ Cardiovasc Imaging 2014;7:912-9.
Article
Google Scholar
Cremer PC, Mentias A, Newton D, Menon V, Wazni O, Tchou PJ, et al. Low yield of myocardial perfusion imaging in asymptomatic patients with atrial fibrillation. JAMA Intern Med 2015;175:1854-5.
Article
Google Scholar
Nawar EW, Niska RW, Xu J. National Hospital Ambulatory Medical Care Survey: 2005 emergency department summary. Adv Data 2005;2007:1-32.
Google Scholar
Isma’eel HA, Serhan M, Sakr GE, Lamaa N, Garabedian T, Elhajj I, et al. Diamond-Forrester and Morise risk models perform poorly in predicting obstructive coronary disease in Middle Eastern Cohort. Int J Cardiol 2016;203:803-5.
Article
Google Scholar