Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 609–615 | Cite as

Association between non-perfusion parameters and presence of ischemia in gated-SPECT myocardial perfusion imaging studies

  • Amalia Peix
  • Lázaro O. Cabrera
  • Kenia Padrón
  • Lydia Rodríguez
  • Jesús Fernández
  • Giselle López
  • Regla Carrillo
  • Erick Mena
  • Yoel Fernández
  • Maurizio Dondi
  • Diana Páez
Original Article



Combined assessment of perfusion and function improves diagnostic and prognostic power of gated-SPECT in patients with coronary artery disease. The aim of this study was to investigate whether the presence of stress-induced ischemia is associated with abnormal resting left ventricular (LV) function and intraventricular dyssynchrony.

Methods and Results

Gated-SPECT myocardial perfusion imaging (MPI) at rest and 15 min post-stress was performed in 101 patients, who were divided into three groups: those with stress-induced ischemia (Group 1, n = 58), those with normal scans (Group 2, n = 28), and those with scar but no ischemia (Group 3, n = 15). More extensive perfusion defects were found in patients of Groups 1 and 3 [Summed stress score (SSS): 13 ± 8 and 21 ± 9, respectively]. In Group 2, the mean SSS was 1.5. The mean change in LV ejection fraction (LVEF at stress − LVEF at rest) was higher in Group 1 v. Group 2 patients: −5.54% ± 6.24% vs −2.46% ± 5.56%, p = 0.02. Group 3 patients also had higher values, similar to Group 1: −6.47% ± 8.82%. Patients with ischemia had almost 50% higher end-diastolic volumes than patients with normal MPI. Similarly, end-systolic volumes were almost twice as high in this group (p < 0.0001). In addition, the histogram bandwidth, a measure of intraventricular dyssynchrony, was greater in Group 1.


Baseline differences in left ventricular volumes and degree of dyssynchrony are associated with inducible ischemia on stress testing in a gated-SPECT MPI. Stress-induced ischemia increases the degree of intraventricular dyssynchrony.


Myocardial perfusion imaging left ventricular ejection fraction intraventricular synchrony ischemia gated-SPECT 



Coronary artery disease


End-diastolic volume


End-systolic volume


Histogram bandwidth


Left ventricular ejection fraction


Myocardial infarction


Myocardial perfusion imaging


Percutaneous coronary intervention


Phase standard deviation


Summed difference score


Summed stress score


Summed rest score


Single photon emission computed tomography

99 mTc-MIBI

Technetium-99m methoxy isobutyl isonitrile



This study is part of and was partially funded from the International Atomic Energy Agency (IAEA) Coordinated Research Protocol E1.30.34. We are grateful to Raymond Russell, MD, PhD, for his suggestions and careful review of the manuscript, as well as to Adrienne Hunter, PhD, for her contribution in reviewing.


There is no conflict of interest.

Supplementary material

12350_2016_728_MOESM1_ESM.pptx (275 kb)
Supplementary material 1 (PPTX 274 kb)


  1. 1.
    Berman D, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99 m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639-47.CrossRefPubMedGoogle Scholar
  2. 2.
    Hachamovitch R, Berman D, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death. Circulation 1998;97:535-43.CrossRefPubMedGoogle Scholar
  3. 3.
    Hale S, Kloner R. Acetaminophen and myocardial stunning after transient ischemia in rabbits hearts. J Cardiovasc Pharmacol Ther 2005;10:121-9.CrossRefPubMedGoogle Scholar
  4. 4.
    Otto A, van Staden J, van Aardt A, van Aswegen E, Joubert G, Englebrecht H. Evaluation of exercise-induced stunning using myocardial perfusion imaging. Cardiovasc J S Afr 2001;12:259-62.PubMedGoogle Scholar
  5. 5.
    Dakik H, Alan S. Myocardial stunning induced and detected by adenosine stress perfusion imaging. J Nucl Cardiol 2001;8:711-2.CrossRefPubMedGoogle Scholar
  6. 6.
    Kloner R, Allen J, Cox T, Zheng Y, Ruiz CE. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 1991;68:329-34.CrossRefPubMedGoogle Scholar
  7. 7.
    Ambrosio G, Betocchi S, Pace L, Losi MA, Perrone-Filardi P, Soricelli A, et al. Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation 1996;94:2455-64.CrossRefPubMedGoogle Scholar
  8. 8.
    Ben-Haim S, Gips S, Merdler A, Front A, Tamir A. Myocardial stunning demonstrated with rest and post-stress measurements of left ventricular function using dual-isotope gated myocardial perfusion SPECT. Nucl Med Commun 2004;25:657-63.CrossRefPubMedGoogle Scholar
  9. 9.
    Mutt F, Beretta M, Vidal I. Identification of myocardial stunning by means of gated perfusion SPECT in patients undergoing ischaemic stress myocardial tests. World J Nucl Med 2003;2:122-5.Google Scholar
  10. 10.
    Johnson L, Verdesca S, Aude W, Xavier RC, Nott LT, Campanella MW, et al. Post-ischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 1997;30:1641-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Toba M, Kumita S, Cho K, Ibuki C, Kumazaki T, Takano T. Usefulness of gated myocardial perfusion SPECT imaging soon after exercise to identify post-exercise stunning in patients with single-vessel coronary artery disease. J Nucl Cardiol 2004;11:697-703.CrossRefPubMedGoogle Scholar
  12. 12.
    Mut F, Giubbini R, Vitola J, Lusa L, Sobic-Saranovic D, Peix A, et al. Detection of post-exercise stunning by early gated SPECT myocardial perfusion imaging: results from the IAEA multi-center study. J Nucl Cardiol 2014;21:1168-76.CrossRefPubMedGoogle Scholar
  13. 13.
    Aljaroudi W, Koneru J, Heo J, Iskandrian AE. Impact of ischemia on left ventricular dyssynchrony by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 2011;18:36-42.CrossRefPubMedGoogle Scholar
  14. 14.
    Samad Z, Atchley A, Trimble M, Sun JL, Shaw LK, Pagnanelli R, et al. Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2011;18:24-30.CrossRefPubMedGoogle Scholar
  15. 15.
    Cerqueira M, Weissman M, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539-42.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen J, Garcia E, Folks R, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Developing of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.CrossRefPubMedGoogle Scholar
  17. 17.
    Hambye AS, Vervaet A, Dobbeleir A. Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts. Eur J Nucl Med Mol Imaging 2004;31:1606-13.CrossRefPubMedGoogle Scholar
  18. 18.
    Tanaka R, Nakamura T, Kumamoto H, Miura M, Hirabayashi K, Okamato N, et al. Detection of stunned myocardium in post-reperfusion cases of acute myocardial infarction. Ann Nucl Med 2003;17:53-60.CrossRefPubMedGoogle Scholar
  19. 19.
    Santana C, Garcia E, Vansant J, Krawczynska EG, Folks RD, Cooke CD, et al. Gated stress-only 99mTc myocardial perfusion SPECT imaging accurately assesses coronary artery disease. Nucl Med Commun 2003;24:241-9.CrossRefPubMedGoogle Scholar
  20. 20.
    Paul A, Hasegawa S, Yoshioka J, Mu X, Maruyama K, Kusuoka H, et al. Characteristics of regional myocardial stunning after exercise in gated myocardial SPECT. J Nucl Cardiol 2002;9:388-94.CrossRefPubMedGoogle Scholar
  21. 21.
    Hashimoto J, Kubo A, Iwasaki R, Iwanaga S, Mitamura H, Ogawa S, et al. Gated single-photon emission tomography imaging protocol to evaluate myocardial stunning after exercise. Eur J Nucl Med 1999;26:1541-6.CrossRefPubMedGoogle Scholar
  22. 22.
    Bestetti A, Di Leo C, Alessi A, Triulzi A, Tagliabue L, Tarolo GL. Post-stress end-systolic left ventricular dilation: A marker of endocardial post-ischemic stunning. Nucl Med Commun 2001;22:685-93.CrossRefPubMedGoogle Scholar
  23. 23.
    Patten RD, Konstam MA. Ventricular remodeling and the renin angiotensin aldosterone system. Congest Heart Fail 2000;6:187-92.CrossRefPubMedGoogle Scholar
  24. 24.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet 2006;367:356-67.CrossRefPubMedGoogle Scholar
  25. 25.
    Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. J Am Coll Cardiol Img 2011;4:98-108.CrossRefGoogle Scholar
  26. 26.
    Udelson JE, Konstam MA. Ventricular remodeling. Fundamental to the progression (and regression) of heart failure. J Am Coll Cardiol 2011;57:1477-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Trimble M, Borges-Neto S, Smallheiser S, Chen J, Honeycutt EF, Shaw LK, et al. Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction disturbances. J Nucl Cardiol 2007;14:298-307.CrossRefPubMedGoogle Scholar
  28. 28.
    Trimble M, Borges-Neto S, Honeycutt E, Shaw LK, Pagnanelli R, Chen J, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction. J Nucl Cardiol 2008;15:663-70.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hida S, Chikamori T, Tanaka H, Igarashi Y, Shiba C, Usui Y, et al. Diagnostic value of left ventricular dyssynchrony after exercise and at rest in the detection of multivessel coronary artery disease on single-photon emission computed tomography. Circ J 2012;76:1942-52.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou Y, Li D, Feng J, Yuan D, Patel Z, Cao K, et al. Left ventricular dyssynchrony parameters measured by phase analysis of post-stress and resting gated SPECT myocardial perfusion imaging. World J Nucl Med 2013;12:3-7.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen CC, Shen TY, Chang MC, Hung GU, Chen WC, Kao CH, et al. Stress-induced myocardial ischemia is associated with early post-stress left ventricular mechanical dyssynchrony as assessed by phase analysis of 201Tl gated SPECT myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2012;39:1904-9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Karacalioglu A, Balta S, Emer O, Demirkol S, Celik T, Ozguven M. Phase analysis in patients with reversible perfusion defects and normal coronary arteries at angiography. Ann Nucl Med 2013;27:416-22.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Amalia Peix
    • 1
    • 3
  • Lázaro O. Cabrera
    • 1
  • Kenia Padrón
    • 1
  • Lydia Rodríguez
    • 1
  • Jesús Fernández
    • 1
  • Giselle López
    • 1
  • Regla Carrillo
    • 1
  • Erick Mena
    • 1
  • Yoel Fernández
    • 1
  • Maurizio Dondi
    • 2
  • Diana Páez
    • 2
  1. 1.Institute of CardiologyHavanaCuba
  2. 2.Nuclear Medicine and Diagnostic Imaging Section, Division of Human HealthInternational Atomic Energy AgencyViennaAustria
  3. 3.Nuclear Medicine DepartmentInstitute of CardiologyHavanaCuba

Personalised recommendations