Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 483–491 | Cite as

Sympathetic cardiac function in early sepsis: Noninvasive evaluation with [123I]-meta-iodobenzylguanidine (123I-MIBG) in vivo SPECT imaging

  • Romain Clerc
  • Sophia Doll
  • Laurent M. Riou
  • Pascale Perret
  • Alexis Broisat
  • Audrey Soubies
  • Marie-Dominique Desruet
  • Daniel Fagret
  • Carole Schwebel
  • Catherine Ghezzi
Original Article

Abstract

Background

Sympathetic system abnormalities have been reported in sepsis-related cardiac dysfunction. The present study aimed at evaluating the potential of the norepinephrine radiolabeled analogue [123I]-meta-iodobenzylguanidine (123I-MIBG) for the noninvasive assessment of modifications in cardiac sympathetic activity occurring in lipopolysaccharide (LPS)-induced experimental acute sepsis by single-photon emission computed tomographic imaging (SPECT).

Methods and Results

Sepsis was induced in male Wistar rats by intraperitoneal injection of 10 mg·kg−1 lipopolysaccharide (n = 16), whereas control animals (n = 7) were injected with vehicle (NaCl 0.9%). Echocardiography in LPS-injected animals (n = 8) demonstrated systolic and diastolic cardiac dysfunction. 123I-MIBG was injected 1 hour after LPS or vehicle administration (n = 8 and 7, respectively), and in vivo SPECT imaging was performed early and late (20 and 180 minutes) after tracer injection prior to animal euthanasia and ex vivo assessment of 123I-MIBG biodistribution. Global and 17-segment SPECT image analysis indicated that early 123I-MIBG activity was not affected by LPS treatment, whereas late cardiac tracer activity was significantly decreased in LPS-treated animals. Consequently, the cardiac washout of 123I-MIBG was significantly higher in LPS-treated (63.3% ± 4.0%) than that in control animals (56.7% ± 5.8%) (P < .05).

Conclusion

Sepsis-induced modifications in cardiac sympathetic nervous system activity were evidenced by noninvasive in vivo 123I-MIBG SPECT imaging.

Keywords

Basic science MIBG imaging experimental sepsis microSPECT imaging 

Abbreviations

123I-MIBG

[123I]-meta-iodobenzylguanidine

SPECT

Single-photon emission computed tomography

LPS

Lipopolysaccharide

NET

Norepinephrine transporter

VMAT

Vesicular monoamine transporters

IP

Intraperitoneal

HR

Heart rate

LV

Left ventricular

ANOVA

Analysis of variance

SNARE

Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor

Notes

Acknowledgments

This work was partly funded by the French program “Investissements d’Avenir” run by the “Agence Nationale pour la Recherche”; Grant “Infrastructure d’avenir en Biologie et Santé – ANR –11-INBS- 0006”.

Author contributions

Data acquisition & analysis: RC, SD, PP, AB, AS; data analysis & interpretation: LMR, MDD, DF, CS, CG; Manuscript drafting: RC, SD, LMR; critical revision: PP, AB, AS, MDD, DF, CS, CG; final approval: all authors.

Disclosure

RC, SD, LMR, PP, AB, AS, MDD, DF, CS, and CG have no conflict of interest to disclose.

Supplementary material

12350_2016_619_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)
12350_2016_619_MOESM2_ESM.pptx (418 kb)
Supplementary material 2 (PPTX 418 kb)

References

  1. 1.
    Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: A comparative meta-analysis. Crit Care Med 2014;42:625-31.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 2007;35:1599-608.CrossRefPubMedGoogle Scholar
  3. 3.
    Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 2005;33:1994-2002.CrossRefPubMedGoogle Scholar
  4. 4.
    Groves AC, Griffiths J, Leung F, Meek RN. Plasma catecholamines in patients with serious postoperative infection. Ann Surg 1973;178:102-7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, et al. Inappropriate sympathetic activation at onset of septic shock: A spectral analysis approach. Am J Respir Crit Care Med 1999;160:458-65.CrossRefPubMedGoogle Scholar
  6. 6.
    Booth LC, Ramchandra R, Calzavacca P, May CN. Role of prostaglandins in determining the increased cardiac sympathetic nerve activity in ovine sepsis. Am J Physiol Regul Integr Comp Physiol 2014;307:R75-81.CrossRefPubMedGoogle Scholar
  7. 7.
    Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ. Pathophysiology of sepsis-related cardiac dysfunction: Driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep 2015;12:130-40.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: Adverse effects of adrenergic stress. J Intensive Care Med 2009;24:293-316.CrossRefPubMedGoogle Scholar
  9. 9.
    Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, et al. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Regul Integr Comp Physiol 2008;295:R891-8.CrossRefPubMedGoogle Scholar
  10. 10.
    Ackland GL, Yao ST, Rudiger A, Dyson A, Stidwill R, Poputnikov D, et al. Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1-adrenoceptor blockade in severe sepsis in rats. Crit Care Med 2010;38:388-94.CrossRefPubMedGoogle Scholar
  11. 11.
    Wilson J, Higgins D, Hutting H, Serkova N, Baird C, Khailova L, et al. Early propranolol treatment induces lung heme-oxygenase-1, attenuates metabolic dysfunction, and improves survival following experimental sepsis. Crit Care 2013;17:R195.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bengel FM. Imaging targets of the sympathetic nervous system of the heart: Translational considerations. J Nucl Med 2011;52:1167-70.CrossRefPubMedGoogle Scholar
  13. 13.
    Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 2011;41:374-87.CrossRefPubMedGoogle Scholar
  14. 14.
    Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O. Endotoxin-induced heart dysfunction in rats: Assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med 2006;34:127-33.CrossRefPubMedGoogle Scholar
  15. 15.
    Ramchandra R, Wan L, Hood SG, Frithiof R, Bellomo R, May CN. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am J Physiol Regul Integr Comp Physiol 2009;297:R1247-53.CrossRefPubMedGoogle Scholar
  16. 16.
    De Geer L, Engwall J, Oscarsson A. Strain echocardiography in septic shock: A comparison with systolic and diastolic function parameters, cardiac biomarkers and outcome. Crit Care 2015;19:122.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Orde SR, Behfar A, Stalboerger PG, Barros-Gomes S, Kane GC, Oh JK. Effect of positive end-expiratory pressure on porcine right ventricle function assessed by speckle tracking echocardiography. BMC Anesthesiol 2015;15:49.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Muller-Werdan U, Buerke M, Ebelt H, Heinroth KM, Herklotz A, Loppnow H, et al. Septic cardiomyopathy—A not yet discovered cardiomyopathy? Exp Clin Cardiol 2006;11:226-36.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sisson JC, Wieland DM, Sherman P, Mangner TJ, Tobes MC, Jacques S Jr. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function. J Nucl Med 1987;28:1620-4.PubMedGoogle Scholar
  20. 20.
    Lightman SL, Iversen LL. The role of uptake2 in the extraneuronal metabolism of catecholamines in the isolated rat heart. Br J Pharmacol 1969;37:638-49.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nakajo M, Shimabukuro K, Yoshimura H, Yonekura R, Nakabeppu Y, Tanoue P, et al. Iodine-131 metaiodobenzylguanidine intra- and extravesicular accumulation in the rat heart. J Nucl Med 1986;27:84-9.PubMedGoogle Scholar
  22. 22.
    Dae MW, De Marco T, Botvinick EH, O’Connell JW, Hattner RS, Huberty JP, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts-implications for clinical studies. J Nucl Med 1992;33:1444-50.PubMedGoogle Scholar
  23. 23.
    Fagret D, Wolf JE, Vanzetto G, Borrel E. Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to valvular aortic stenosis. J Nucl Med 1993;34:57-60.PubMedGoogle Scholar
  24. 24.
    Fathala A. Myocardial perfusion scintigraphy: Techniques, interpretation, indications and reporting. Ann Saudi Med 2011;31:625-34.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Goethals LR, Weytjens CD, De Geeter F, Droogmans S, Caveliers V, Keyaerts M, et al. Regional quantitative analysis of small animal myocardial sympathetic innervation and initial application in streptozotocin induced diabetes. Contrast Media Mol Imaging 2009;4:174-82.CrossRefPubMedGoogle Scholar
  26. 26.
    Tessier JP, Thurner B, Jüngling E, Lückhoff A, Fischer Y. Impairment of glucose metabolism in hearts from rats treated with endotoxin. Cardiovasc Res 2003;60:119-30.CrossRefPubMedGoogle Scholar
  27. 27.
    Raymond RM, McLane MP, Law WR, King NF, Leutz DW. Myocardial insulin resistance during acute endotoxin shock in dogs. Diabetes 1988;37:1684-8.CrossRefPubMedGoogle Scholar
  28. 28.
    Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 2004;36:141-50.CrossRefPubMedGoogle Scholar
  29. 29.
    Vanasco V, Magnani ND, Cimolai MC, Valdez LB, Evelson P, Boveris A, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr 2012;44:243-52.CrossRefPubMedGoogle Scholar
  30. 30.
    Schömig A, Fischer S, Kurz T, Richardt G, Schömig E. Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: Mechanism and metabolic requirements. Circ Res 1987;60:194-205.CrossRefPubMedGoogle Scholar
  31. 31.
    Bocking JK, Sibbald WJ, Holliday RL, Scott S, Viidik T. Plasma catecholamine levels and pulmonary dysfunction in sepsis. Surg Gynecol Obstet 1979;148:715-9.PubMedGoogle Scholar
  32. 32.
    Goldstein DS, Brush JE Jr, Eisenhofer G, Stull R, Esler M. In vivo measurement of neuronal uptake of norepinephrine in the human heart. Circulation 1988;78:41-8.CrossRefPubMedGoogle Scholar
  33. 33.
    Bennett MK, Calakos N, Scheller RH. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992;257:255-9.CrossRefPubMedGoogle Scholar
  34. 34.
    Das P, Chopra M, Sharma AC. Upregulation of myocardial syntaxin 1A is associated with an early stage of polymicrobial sepsis. Mol Cell Biochem 2009;323:61-8.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Romain Clerc
    • 1
    • 2
  • Sophia Doll
    • 1
    • 2
  • Laurent M. Riou
    • 1
    • 2
    • 5
  • Pascale Perret
    • 1
    • 2
  • Alexis Broisat
    • 1
    • 2
  • Audrey Soubies
    • 1
    • 2
  • Marie-Dominique Desruet
    • 1
    • 3
  • Daniel Fagret
    • 1
    • 3
  • Carole Schwebel
    • 1
    • 2
    • 4
  • Catherine Ghezzi
    • 1
    • 2
  1. 1.INSERM U1039Radiopharmaceutiques BiocliniquesGrenobleFrance
  2. 2.Université Grenoble AlpesGrenobleFrance
  3. 3.Nuclear Medicine DepartmentGrenoble University HospitalGrenobleFrance
  4. 4.Intensive Care UnitGrenoble University HospitalGrenobleFrance
  5. 5.INSERM U1039Faculté de Médecine de GrenobleLa TroncheFrance

Personalised recommendations