Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 635–651 | Cite as

Absolute quantification of myocardial blood flow

Review Article

Abstract

With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

Keywords

Blood flow computed tomography magnetic resonance positron emission tomography quantification 

Abbreviations

CMR

Cardiac magnetic resonance

CT

Computed tomography

MBF

Myocardial blood flow

MFR

Myocardial blood flow reserve

PET

Positron emission tomography

SPECT

Single-photon emission computed tomography

Notes

Acknowledgments

We thank Yuuki Tomiyama, MSc, and Eriko Suzuki for their technical support. This manuscript has been reviewed by a North American English-language professional editor, Ms. Holly Beanlands. The authors also thank Ms. Holly Beanlands for critical reading of the manuscript.

Disclosures

The authors’ work presented in this article was supported in part by grants from the Innovation Program of the Japan Science and Technology Agency.

Supplementary material

12350_2016_591_MOESM1_ESM.pptx (817 kb)
Supplementary material 1 (PPTX 816 kb)

References

  1. 1.
    Yoshinaga K, Manabe O, Tamaki N. Assessment of coronary endothelial function using PET. J Nucl Cardiol. 2011;18:486-500.PubMedCrossRefGoogle Scholar
  2. 2.
    Yoshinaga K, Tomiyama Y, Suzuki E, Tamaki N. Myocardial blood flow quantification using positron-emission tomography: Analysis and practice in the clinical setting. Circ J. 2013;77:1662-71.PubMedCrossRefGoogle Scholar
  3. 3.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, Investigators FS. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213-24.PubMedCrossRefGoogle Scholar
  4. 4.
    Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215-24.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, Ruddy TD, Sarveswaran N, Tee RE, Beanlands RS. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740-8.PubMedCrossRefGoogle Scholar
  6. 6.
    Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, Bergmann SR, Brunken RC, Case J, Delbeke D, DiCarli MF, Garcia EV, Goldstein RA, Gropler RJ, Travin M, Patterson R, Schelbert HR. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol. 2006;13:e121-51.PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshinaga K, Tamaki N. Current status of nuclear cardiology in Japan: Ongoing efforts to improve clinical standards and to establish evidence. J Nucl Cardiol. 2015;22:690-9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678-84.PubMedCrossRefGoogle Scholar
  9. 9.
    Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: Is myocardial flow quantification a clinical reality? J Nucl Cardiol. 2012;19:1044-59.PubMedCrossRefGoogle Scholar
  10. 10.
    Kikuchi Y, Oyama-Manabe N, Naya M, Manabe O, Tomiyama Y, Sasaki T, Katoh C, Kudo K, Tamaki N, Shirato H. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with (1)(5)O-H(2)O PET. Eur Radiol. 2014;24:1547-56.PubMedCrossRefGoogle Scholar
  11. 11.
    Tomiyama Y, Manabe O, Oyama-Manabe N, Naya M, Sugimori H, Hirata K, Mori Y, Tsutsui H, Kudo K, Tamaki N, Katoh C. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET. J Magn Reson Imaging. 2015;42:754-62.PubMedCrossRefGoogle Scholar
  12. 12.
    Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, Perera D, Knuuti J, Baker S, Hedstrom E, Schleyer P, O’Doherty M, Barrington S, Nagel E. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60:1546-55.PubMedCrossRefGoogle Scholar
  13. 13.
    Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87-94.PubMedCrossRefGoogle Scholar
  14. 14.
    Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985;57:341-53.PubMedCrossRefGoogle Scholar
  15. 15.
    Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong WH, Tewson TJ, Berridge MS, Bolomey LA, Hartz RK, Smalling RW, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol. 1986;7:775-89.PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701-12.PubMedGoogle Scholar
  17. 17.
    Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331:222-7.PubMedCrossRefGoogle Scholar
  18. 18.
    Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, Ono Y, Shishido F, Inugami A, Tomura N, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78:104-15.PubMedCrossRefGoogle Scholar
  19. 19.
    Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, Williams K, Davies RA, Labinaz M, Beanlands RS. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440-9.PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshinaga K, Manabe O, Tamaki N. Physiological assessment of myocardial perfusion using nuclear cardiology would enhance coronary artery disease patient care. Circ J. 2011;75:713-23.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshinaga K, Tamaki N, Ruddy T, DeKemp RA, Beanlands R. Evaluation of myocardial perfusion. In: Wahl R, editor. Principles and practice of PET and PET/CT. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 541-64.Google Scholar
  22. 22.
    Yoshinaga K, Manabe O, Tamaki N. Assessment of coronary endothelial function using PET. J Nucl Cardiol Off Publication of the Am Soc Nucl Cardiol. 2011;18:486-500.CrossRefGoogle Scholar
  23. 23.
    Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J Nucl Cardiol. 2015;22:935-51.PubMedCrossRefGoogle Scholar
  24. 24.
    Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17:555-70.PubMedCrossRefGoogle Scholar
  25. 25.
    Katoh C, Morita K, Shiga T, Kubo N, Nakada K, Tamaki N. Improvement of algorithm for quantification of regional myocardial blood flow using 15O-water with PET. J Nucl Med. 2004;45:1908-16.PubMedGoogle Scholar
  26. 26.
    Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, Naya M, Sakakibara M, Tsutsui H, deKemp RA, Tamaki N. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol. 2012;19:763-74.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshinaga K, Chow BJ, dekemp RA, Thorn S, Ruddy TD, Davies RA, DaSilva JN, Beanlands R. Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders. Curr Pharm Des. 2005;11:903-32.PubMedCrossRefGoogle Scholar
  28. 28.
    Gaemperli O, Saraste A, Knuuti J. Cardiac hybrid imaging. Eur Heart J Cardiovasc Imaging. 2012;13:51-60.PubMedCrossRefGoogle Scholar
  29. 29.
    Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, Heller GV. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol. 2008;15:745-53.PubMedCrossRefGoogle Scholar
  30. 30.
    Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1-15.PubMedCrossRefGoogle Scholar
  31. 31.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830-40.PubMedCrossRefGoogle Scholar
  32. 32.
    Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med. 2011;41:305-13.PubMedCrossRefGoogle Scholar
  33. 33.
    Beanlands RS, Chow BJ, Dick A, Friedrich MG, Gulenchyn KY, Kiess M, Leong-Poi H, Miller RM, Nichol G, Freeman M, Bogaty P, Honos G, Hudon G, Wisenberg G, Van Berkom J, Williams K, Yoshinaga K, Graham J. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease—executive summary. Can J Cardiol. 2007;23:107-19.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O-H2O PET/CT scan. J Nucl Med. 2011;52:745-9.PubMedCrossRefGoogle Scholar
  35. 35.
    Tamaki N, Yoshinaga K, Naya M. Coronary vasomotor function assessed by positron emission tomography. Eur J Nucl Med Mol Imaging. 2010;37:1213-24.PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshinaga K, Klein R, Tamaki N. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging-From basic aspects to clinical applications. J Cardiol. 2010;55:163-73.PubMedCrossRefGoogle Scholar
  37. 37.
    Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol. 2006;13:19-23.PubMedCrossRefGoogle Scholar
  38. 38.
    deKemp RA, Yoshinaga K, Beanlands RS. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol. 2007;14:380-97.PubMedCrossRefGoogle Scholar
  39. 39.
    Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, Bischof Delaloye A, Kaufmann PA. Quantification of myocardial blood flow with 82Rb positron emission tomography: Clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39:1037-47.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sakuma H, Koskenvuo JW, Niemi P, Kawada N, Toikka JO, Knuuti J, Laine H, Saraste M, Kormano M, Hartiala JJ. Assessment of coronary flow reserve using fast velocity-encoded cine MR imaging: validation study using positron emission tomography. AJR Am J Roentgenol. 2000;175:1029-33.PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshinaga K, Manabe O, Katoh C, Chen L, Klein R, Naya M, deKemp RA, Williams K, Beanlands RS, Tamaki N. Quantitative analysis of coronary endothelial function with generator-produced 82Rb PET: Comparison with 15O-labelled water PET. Eur J Nucl Med Mol Imaging. 2010;37:2233-41.PubMedCrossRefGoogle Scholar
  42. 42.
    Schindler TH, Nitzsche EU, Olschewski M, Brink I, Mix M, Prior J, Facta A, Inubushi M, Just H, Schelbert HR. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med. 2004;45:419-28.PubMedGoogle Scholar
  43. 43.
    Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, Huisman M, Poethko T, Schuster T, Yu M, Robinson S, Casebier D, Henke J, Wester HJ, Schwaiger M. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119:2333-42.PubMedCrossRefGoogle Scholar
  44. 44.
    Yoshinaga K, Burwash IG, Leech JA, Haddad H, Johnson CB, deKemp RA, Garrard L, Chen L, Williams K, DaSilva JN, Beanlands RS. The effects of continuous positive airway pressure on myocardial energetics in patients with heart failure and obstructive sleep apnea. J Am Coll Cardiol. 2007;49:450-8.PubMedCrossRefGoogle Scholar
  45. 45.
    Yoshinaga K, Tamaki N. Imaging myocardial metabolism. Curr. Opin. Biotechnol. 2007;18:52-9.PubMedCrossRefGoogle Scholar
  46. 46.
    Ohira H, Beanlands RS, Davies RA, Mielniczuk L. The role of nuclear imaging in pulmonary hypertension. J Nucl Cardiol. 2015;22:141-57.PubMedCrossRefGoogle Scholar
  47. 47.
    Croteau E, Renaud JM, McDonald M, Klein R, DaSilva JN, Beanlands RS, deKemp RA. Test-retest repeatability of myocardial blood flow and infarct size using (1)(1)C-acetate micro-PET imaging in mice. Eur J Nucl Med Mol Imaging. 2015;42:1589-600.PubMedCrossRefGoogle Scholar
  48. 48.
    Mori Y, Manabe O, Naya M, Tomiyama Y, Yoshinaga K, Magota K, Oyama-Manabe N, Hirata K, Tsutsui H, Tamaki N, Katoh C. Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H 2O PET. Ann Nucl Med. 2015;29:15-20.PubMedCrossRefGoogle Scholar
  49. 49.
    Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, Hutson AD, Dekemp RA, Haka MS, Sajjad M, Cimato TR, Curtis AB, Cain ME, Canty JM Jr. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141-9.PubMedCrossRefGoogle Scholar
  50. 50.
    Harms HJ, Lubberink M, de Haan S, Knaapen P, Huisman MC, Schuit RC, Windhorst AD, Allaart CP, Lammertsma AA. Use of a single 11C-meta-hydroxyephedrine scan for assessing flow-innervation mismatches in patients with ischemic cardiomyopathy. J Nucl Med. 2015;56:1706-11.PubMedCrossRefGoogle Scholar
  51. 51.
    Bellam N, Veledar E, Dorbala S, Di Carli MF, Shah S, Eapen D, Quyyumi A, Beanlands RS, Merhige ME, Williams BA, Chow BJ, Min JK, Berman DS, Shaw LJ. Prognostic significance of impaired chronotropic response to pharmacologic stress Rb-82 PET. J Nucl Cardiol. 2014;21:233-44.PubMedCrossRefGoogle Scholar
  52. 52.
    Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, Chow BJ, Min JK, Pencina MJ, Berman DS, Shaw LJ. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61:176-84.PubMedCrossRefGoogle Scholar
  53. 53.
    Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, Gibson CM, Devine M, Lazewatsky J, Bhat G, Washburn D. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469-77.PubMedCrossRefGoogle Scholar
  54. 54.
    Yokoyama A. Current Japanese Ministry of Health, labor, and welfare approval of cardiac positron emission tomography. Ann Nucl Cardiol. 2015;1:106-7.CrossRefGoogle Scholar
  55. 55.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, Nelemans PJ, Schalla S. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59:1719-28.PubMedCrossRefGoogle Scholar
  56. 56.
    Parkash R, deKemp RA, Ruddy TT, Kitsikis A, Hart R, Beauschene L, Williams K, Davies RA, Labinaz M, Beanlands RS. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Yoshinaga K, Katoh C, Manabe O, Klein R, Naya M, Sakakibara M, Yamada S, Dekemp RA, Tsutsui H, Tamaki N. Incremental diagnostic value of regional myocardial blood flow quantification over relative perfusion imaging with generator-produced rubidium-82 PET. Circ J. 2011;75:2628-34.PubMedCrossRefGoogle Scholar
  58. 58.
    Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, Klein R, Ruddy TD, Aung M, Garrard L, Beanlands RS. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670-80.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoshinaga K, Katoh C, Noriyasu K, Iwado Y, Furuyama H, Ito Y, Kuge Y, Kohya T, Kitabatake A, Tamaki N. Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol. 2003;10:275-83.PubMedCrossRefGoogle Scholar
  60. 60.
    Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, Heymans MW, Kajander SA, Pietila M, James S, Sorensen J, Knaapen P, Knuuti J. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64:1464-75.PubMedCrossRefGoogle Scholar
  61. 61.
    Stuijfzand WJ, Uusitalo V, Kero T, Danad I, Rijnierse MT, Saraste A, Raijmakers PG, Lammertsma AA, Harms HJ, Huisman MC, Huisman MC, Marques KM, Kajander SA, Pietila M, Sorensen J, van Royen N, Knuuti J, Knaapen P. Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease. Circ Cardiovasc Imaging. 2015;8:e002400.PubMedCrossRefGoogle Scholar
  62. 62.
    Valenta I, Quercioli A, Schindler TH. Diagnostic value of PET-measured longitudinal flow gradient for the identification of coronary artery disease. JACC Cardiovasc Imaging. 2014;7:387-96.PubMedCrossRefGoogle Scholar
  63. 63.
    Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, Lok-Tin Szeto A, Aung M, Davies RA, Ruddy TD, Beanlands RS. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48:1029-39.PubMedCrossRefGoogle Scholar
  64. 64.
    Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, Burkhard N, Wyss CA, Kaufmann PA. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150-6.PubMedCrossRefGoogle Scholar
  65. 65.
    Naya M, Murthy VL, Foster CR, Gaber M, Klein J, Hainer J, Dorbala S, Blankstein R, Di Carli MF. Prognostic interplay of coronary artery calcification and underlying vascular dysfunction in patients with suspected coronary artery disease. J Am Coll Cardiol. 2013;61:2098-106.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nesterov SV, Deshayes E, Sciagra R, Settimo L, Declerck JM, Pan XB, Yoshinaga K, Katoh C, Slomka PJ, Germano G, Han C, Aalto V, Alessio AM, Ficaro EP, Lee BC, Nekolla SG, Gwet KL, deKemp RA, Klein R, Dickson J, Case JA, Bateman T, Prior JO, Knuuti JM. Quantification of myocardial blood flow in absolute terms using (82)Rb PET imaging: the RUBY-10 Study. JACC Cardiovasc Imaging. 2014;7:1119-27.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Murthy VL, Lee BC, Sitek A, Naya M, Moody J, Polavarapu V, Ficaro EP, Di Carli MF. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med. 2014;55:1952-8.PubMedCrossRefGoogle Scholar
  68. 68.
    Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007;14:420-32.PubMedCrossRefGoogle Scholar
  69. 69.
    Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol. 2007;14:433-54.PubMedCrossRefGoogle Scholar
  70. 70.
    Petretta M, Cuocolo R, Acanpa W, Cuocolo A. Quantification of myocardial perfusion: SPECT. Curr Carduivasc Imaging Rep. 2012;5:144-50.CrossRefGoogle Scholar
  71. 71.
    Iida H, Eberl S, Kim KM, Tamura Y, Ono Y, Nakazawa M, Sohlberg A, Zeniya T, Hayashi T, Watabe H. Absolute quantitation of myocardial blood flow with (201)Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling. Eur J Nucl Med Mol Imaging. 2008;35:896-905.PubMedCrossRefGoogle Scholar
  72. 72.
    Smith AM, Gullberg GT, Christian PE, Datz FL. Kinetic modeling of teboroxime using dynamic SPECT imaging of a canine model. J Nucl Med. 1994;35:484-95.PubMedGoogle Scholar
  73. 73.
    Ito Y, Katoh C, Noriyasu K, Kuge Y, Furuyama H, Morita K, Kohya T, Kitabatake A, Tamaki N. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET. Eur J Nucl Med Mol Imaging. 2003;30:281-7.PubMedCrossRefGoogle Scholar
  74. 74.
    Stein PD, Beemath A, Kayali F, Skaf E, Sanchez J, Olson RE. Multidetector computed tomography for the diagnosis of coronary artery disease: a systematic review. Am J Med. 2006;119:203-16.PubMedCrossRefGoogle Scholar
  75. 75.
    Storto G, Cirillo P, Vicario ML, Pellegrino T, Sorrentino AR, Petretta M, Galasso G, De Sanctis V, Piscione F, Cuocolo A. Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: comparison with the results of intracoronary Doppler technique. J Nucl Cardiol. 2004;11:682-8.PubMedCrossRefGoogle Scholar
  76. 76.
    Sugihara H, Yonekura Y, Kataoka K, Fukai D, Kitamura N, Taniguchi Y. Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99m tetrofosmin. J Nucl Cardiol. 2001;8:575-9.PubMedCrossRefGoogle Scholar
  77. 77.
    Taki J, Fujino S, Nakajima K, Matsunari I, Okazaki H, Saga T, Bunko H, Tonami N. (99m)Tc-sestamibi retention characteristics during pharmacologic hyperemia in human myocardium: comparison with coronary flow reserve measured by Doppler flowire. J Nucl Med. 2001;42:1457-63.PubMedGoogle Scholar
  78. 78.
    Tsukamoto T, Ito Y, Noriyasu K, Morita K, Katoh C, Okamoto H, Tamaki N. Quantitative assessment of regional myocardial flow reserve using tc-99m-sestamibi imaging. Circ J. 2005;69:188-93.PubMedCrossRefGoogle Scholar
  79. 79.
    Ben-Haim S, Kennedy J, Keidar Z. Novel cadmium zinc telluride devices for myocardial perfusion imaging-technological aspects and clinical applications. Semin Nucl Med. 2016;46:273-85.PubMedCrossRefGoogle Scholar
  80. 80.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724-32.PubMedCrossRefGoogle Scholar
  81. 81.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135-44.PubMedCrossRefGoogle Scholar
  82. 82.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324-36.PubMedCrossRefGoogle Scholar
  83. 83.
    Di Carli MF, Dorbala S, Curillova Z, Kwong RJ, Goldhaber SZ, Rybicki FJ, Hachamovitch R. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol. 2007;14:799-809.PubMedCrossRefGoogle Scholar
  84. 84.
    Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464-80.PubMedCrossRefGoogle Scholar
  85. 85.
    Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2:1009-23.PubMedCrossRefGoogle Scholar
  86. 86.
    Sato A, Hiroe M, Tamura M, Ohigashi H, Nozato T, Hikita H, Takahashi A, Aonuma K, Isobe M. Quantitative measures of coronary stenosis severity by 64-Slice CT angiography and relation to physiologic significance of perfusion in nonobese patients: comparison with stress myocardial perfusion imaging. J Nucl Med. 2008;49:564-72.PubMedCrossRefGoogle Scholar
  87. 87.
    Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, Stokkel MP, Dibbets-Schneider P, Decramer I, De Bondt P, van der Wall EE, Vanhoenacker PK, Bax JJ. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48:2508-14.PubMedCrossRefGoogle Scholar
  88. 88.
    Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782-8.PubMedCrossRefGoogle Scholar
  89. 89.
    Naya M, Murthy VL, Blankstein R, Sitek A, Hainer J, Foster C, Gaber M, Fantony JM, Dorbala S, Di Carli MF. Quantitative relationship between the extent and morphology of coronary atherosclerotic plaque and downstream myocardial perfusion. J Am Coll Cardiol. 2011;58:1807-16.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp RA, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with 82Rb dynamic PET. J Nucl Med. 2009;50:68-71.PubMedCrossRefGoogle Scholar
  91. 91.
    Allen C, Shih WJ. Normal Tc-99m tetrofosmin cardiac SPECT images with three-vessel coronary artery disease. Clin Nucl Med. 2010;35:944-7.PubMedCrossRefGoogle Scholar
  92. 92.
    George RT, Arbab-Zadeh A, Miller JM, Vavere AL, Bengel FM, Lardo AC, Lima JA. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5:333-40.PubMedCrossRefGoogle Scholar
  93. 93.
    Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, Litmanovich D, Frenkel A, Aronson D, Engel A, Beyar R, Israel O. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol. 2007;49:1059–67.PubMedCrossRefGoogle Scholar
  94. 94.
    Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Pires-Morais G, Santos L, Melica B, Rodrigues A, Braga P, Azevedo L, Teixeira M, Leite-Moreira A, Silva-Cardoso J, Nagel E, Gama V. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol. 2013;61:1099-107.PubMedCrossRefGoogle Scholar
  95. 95.
    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703-8.PubMedCrossRefGoogle Scholar
  96. 96.
    Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61:2233-41.PubMedCrossRefGoogle Scholar
  97. 97.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58:1989-97.PubMedCrossRefGoogle Scholar
  98. 98.
    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237-45.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, Marincek B, Luscher TF, von Schulthess GK. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230-5.PubMedCrossRefGoogle Scholar
  100. 100.
    Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, Banning AP, Neubauer S, Robson MD, Selvanayagam JB. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol. 2007;49:2440-9.PubMedCrossRefGoogle Scholar
  101. 101.
    Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008;27:818-24.PubMedCrossRefGoogle Scholar
  102. 102.
    Jerosch-Herold M, Kwong RY. Optimal imaging strategies to assess coronary blood flow and risk for patients with coronary artery disease. Curr Opin Cardiol. 2008;23:599-606.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Parkka JP, Niemi P, Saraste A, Koskenvuo JW, Komu M, Oikonen V, Toikka JO, Kiviniemi TO, Knuuti J, Sakuma H, Hartiala JJ. Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans. Magn Reson Med. 2006;55:772-9.PubMedCrossRefGoogle Scholar
  104. 104.
    Ichihara T, Ishida M, Kitagawa K, Ichikawa Y, Natsume T, Yamaki N, Maeda H, Takeda K, Sakuma H. Quantitative analysis of first-pass contrast-enhanced myocardial perfusion MRI using a Patlak plot method and blood saturation correction. Magn Reson Med. 2009;62:373-83.PubMedCrossRefGoogle Scholar
  105. 105.
    Biglands JD, Magee DR, Sourbron SP, Plein S, Greenwood JP, Radjenovic A. Comparison of the diagnostic performance of four quantitative myocardial perfusion estimation methods used in cardiac mr imaging: CE-MARC substudy. Radiology. 2015;275:393-402.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kurata A, Kawaguchi N, Kido T, Inoue K, Suzuki J, Ogimoto A, Funada J, Higaki J, Miyagawa M, Vembar M, Mochizuki T. Qualitative and quantitative assessment of adenosine triphosphate stress whole-heart dynamic myocardial perfusion imaging using 256-slice computed tomography. PLoS One. 2013;8:e83950.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.PubMedCrossRefGoogle Scholar
  108. 108.
    Farhad H, Dunet V, Bachelard K, Allenbach G, Kaufmann PA, Prior JO. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging. 2013;14:1203-10.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Keiichiro Yoshinaga
    • 1
  • Osamu Manabe
    • 2
  • Nagara Tamaki
    • 2
  1. 1.Diagnostic and Therapeutic Nuclear MedicineNational Institute of Radiological SciencesChibaJapan
  2. 2.Department of Nuclear MedicineHokkaido University Graduate School of MedicineSapporoJapan

Personalised recommendations