Skip to main content
Log in

Fast myocardial perfusion imaging with 99mTc in challenging patients using conventional SPECT cameras

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We attempted to validate the performance of a fast myocardial perfusion imaging (MPI) protocol in diagnostically challenging patients.

Methods

78 patients with ΒΜΙ > 24.9, LVH or three vessels disease underwent two sequential gated-MPI studies. The first at 15 (Early Imaging, EI) and the second at 45 (Late Imaging, LI) minutes post 99mTc-injection, at both stress and rest. Counts over heart (H), liver (Liv) and subdiaphragmatic space (Sub) and image quality, and myocardial perfusion and function parameters were compared between the two protocols. Coronary angiography was performed within 2 months from MPI, and ROC analysis was used to compare the diagnostic accuracy for the detection of ≥50% diameter luminal stenosis.

Results

Quality was optimal-good in 93% of EI and 98% of LI studies (P = .12), H/Liv and stress H/Sub ratios were similar, but rest H/Sub ratio was lower in EI (P = .009). SSS [10 (0 to 46) vs 9 (0 to 36), P = .006] and SDS [3 (0 to 35) vs 2 (0 to 34), P = .02] were higher in EI protocol. LVEF, motion and thickening scores did not differ between the two protocols. A highly significant (P < .001) linear relationship with clinically negligible mean differences in Bland-Altman analysis was observed for all perfusion and function-related data. Sensitivity (EI 81%, LI 80%) and specificity (65% for both) did not differ (P = .23) between the two protocols.

Conclusion

The fast protocol is technically feasible and diagnostically accurate compared to the established protocol in diagnostically challenging patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

SSS:

Summed stress score

SDS:

Summed difference score

SRS:

Summed rest score

LVEDV:

LV end-diastolic volume

LVESV:

LV end-systolic volume

BAA:

Bland-Altman analysis

TMD:

Total ischemic mass defect

ICC:

Intraclass correlation coefficient

QCA:

Quantitative coronary angiography

References

  1. WHO. The top ten causes of death. Fact sheet no 310; 2013.

  2. Malvern PAMR. The Myocardial Perfusion Imaging Market Guide (U.S.) Supplement to the U.S. Imaging Market Guide. Inc 2007.

  3. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007;116:1290-305.

    Article  Google Scholar 

  4. Henzlova MJ, Cerqueira MD, Mahmarian JJ, Yao SS. Stress protocols and tracers. J Nucl Cardiol 2006;13:e80-90.

    Article  Google Scholar 

  5. Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, et al. Single photon-emission computed tomography. J Nucl Cardiol 2010;17:941-73.

    Article  Google Scholar 

  6. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, Bengel F, Busemann Sokole E, Davies G, Dondi M, Edenbrandt L, Franken P, Kjaer A, Knuuti J, Lassmann M, Ljungberg M, Marcassa C, Marie PY, McKiddie F, O’Connor M, Prvulovich E, Underwood R, van Eck-Smit B. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.

    Article  CAS  Google Scholar 

  7. Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99 m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 1993;34:1254-9.

    CAS  PubMed  Google Scholar 

  8. Giorgetti A, Rossi M, Stanislao M, Valle G, Bertolaccini P, Maneschi A, et al. Feasibility and diagnostic accuracy of a gated SPECT early-imaging protocol: a multicenter study of the Myoview Imaging Optimization Group. J Nucl Med 2007;48:1670-5.

    Article  Google Scholar 

  9. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16:233-70.

    Article  Google Scholar 

  10. Mahajan N, Polavaram L, Vankayala H, Ference B, Wang Y, Ager J, et al. Diagnostic accuracy of myocardial perfusion imaging and stress echocardiography for the diagnosis of left main and triple vessel coronary artery disease: a comparative meta-analysis. Heart 2010;96:956-66.

    Article  CAS  Google Scholar 

  11. Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol 2006;34:193-211.

    PubMed  Google Scholar 

  12. Hansen CL, Woodhouse S, Kramer M. Effect of patient obesity on the accuracy of thallium-201 myocardial perfusion imaging. Am J Cardiol 2000;85:749-52.

    Article  CAS  Google Scholar 

  13. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-5.

    Article  CAS  Google Scholar 

  14. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-45.

    Article  CAS  Google Scholar 

  15. Dvorak RA, Brown RK, Corbett JR. Interpretation of SPECT/CT myocardial perfusion images: common artifacts and quality control techniques. Radiographics 2011;31:2041-57.

    Article  Google Scholar 

  16. Nuyts J, Dupont P, Van den Maegdenbergh V, Vleugels S, Suetens P, Mortelmans L. A study of the liver-heart artifact in emission tomography. J Nucl Med 1995;36:133-9.

    CAS  Google Scholar 

  17. Matsunari I, Tanishima Y, Taki J, Ono K, Nishide H, Fujino S, et al. Early and delayed technetium-99m-tetrofosmin myocardial SPECT compared in normal volunteers. J Nucl Med 1996;37:1622-6.

    CAS  PubMed  Google Scholar 

  18. Hattori N, Tamaki N, Masuda I, Taniguchi Y, Kitano H, Kudoh T, et al. An ultrashort 1-day protocol of Tc-99m tetrofosmin. Clin Nucl Med 1999;24:85-91.

    Article  CAS  Google Scholar 

  19. Tadehara F, Yamamoto H, Tsujiyama S, Hinoi T, Matsuo S, Matsumoto N, et al. Feasibility of a rapid protocol of 1-day single-isotope rest/adenosine stress Tc-99m sestamibi ECG-gated myocardial perfusion imaging. J Nucl Cardiol 2008;15:35-41.

    Article  Google Scholar 

  20. Matsumoto N, Sato Y, Suzuki Y, Yoda S, Kunimasa T, Kato M, et al. Usefulness of rapid low-dose/high-dose 1-day 99mTc-sestamibi ECG-gated myocardial perfusion single-photon emission computed tomography. Circ J 2006;70:1585-9.

    Article  Google Scholar 

  21. Philippe L, Merino B, Blaire T, Bailliez A, Casset-Senon D, Levy M, et al. Tetrofosmin early time gated post-stress single-photon emission computed tomography imaging: feasibility and potential benefits. J Nucl Cardiol 2011;18:62-72.

    Article  Google Scholar 

  22. Mut F, Giubbini R, Vitola J, Lusa L, Sobic-Saranovic D, Peix A, et al. Detection of post-exercise stunning by early gated SPECT myocardial perfusion imaging: results from the IAEA multi-center study. J Nucl Cardiol 2014;21:1168-76.

    Article  Google Scholar 

  23. Miller TD, Askew JW, O’Connor MK. New toys for nuclear cardiologists. Circ Cardiovasc Imaging 2011;4:5-7.

    Article  Google Scholar 

  24. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008;117:1283-91.

    Article  Google Scholar 

  25. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.

    Article  Google Scholar 

  26. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240-5.

    Article  Google Scholar 

  27. Berman DS, Abidov A, Kang X, Hayes SW, Friedman JD, Sciammarella MG, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol 2004;11:414-23.

    Article  Google Scholar 

Download references

Disclosure

No relationships with industry or forms of financial support to be disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Katsikis MD.

Additional information

See related editorial, doi:10.1007/s12350-016-0461-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsikis, A., Theodorakos, A., Kouzoumi, A. et al. Fast myocardial perfusion imaging with 99mTc in challenging patients using conventional SPECT cameras. J. Nucl. Cardiol. 24, 1314–1327 (2017). https://doi.org/10.1007/s12350-016-0431-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0431-5

Keywords

Navigation