Skip to main content
Log in

Impact of medications on mIBG uptake, with specific attention to the heart: Comprehensive review of the literature

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

A critical review of the literature on drug interactions with mIBG uptake was performed to allow formulation of contemporary guidance regarding withholding medications prior to clinical imaging studies.

Methods

Published information was extracted on the experimental system used, the quantitative characteristics of the measurements, and whether any data directly examining cardiac tissues were included. Level of evidence for each medication category was assessed on a qualitative scale of very low, low, medium, or high. Strength of medication effect for inhibition of mIBG uptake was judged as none, weak, moderate, or strong.

Results

The only medications for which level of evidence was judged high were labetalol and reserpine. Level of evidence was judged medium for tricyclic antidepressants, calcium channel blockers, and antiarrhythmics (specifically amiodarone). Evidence was judged sufficient to recommend withholding labetalol and the tricyclic antidepressants prior to mIBG cardiac imaging. Mechanistic evidence was sufficient to suggest consideration of withdrawal of sympathomimetic amines and serotonin-norepinephrine reuptake inhibitors (SNRIs).

Conclusions

As there is strong evidence for inhibition of mIBG uptake in only a small number of compounds, clinical decisions regarding withdrawal of concomitant medications should be individualized by considering the potential consequences of a false-positive (artificially low cardiac uptake) imaging result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HF:

Heart failure

H/M:

Heart/mediastinum ratio

mHED:

Meta-hydroxyephedrine

mIBG:

Meta-iodobenzylguanidine

NE:

Norepinephrine

NET:

Norepinephrine transporter

PET:

Positron emission tomography

SNRI:

Serotonin-norepinephrine reuptake inhibitor

SSRI:

Selective serotonin reuptake inhibitor

WR:

Washout rate

References

  1. Wieland DM, Swanson DP, Brown LE, Beierwaltes WH. Imaging the adrenal medulla with an I-131-labeled antiadrenergic agent. J Nucl Med. 1979;20:155-8.

    CAS  PubMed  Google Scholar 

  2. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: Adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349-53.

    CAS  PubMed  Google Scholar 

  3. Sisson JC, Wieland DM. Radiolabelled meta-iodobenzylguanidine: Pharmacology and clinical studies. Am J Physiol Imaging. 1986;1:96-103.

    CAS  PubMed  Google Scholar 

  4. Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH. Radioiodinated metaiodobenzylguanidine: A review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med. 1994;21:545-59.

    Article  CAS  PubMed  Google Scholar 

  5. Solanki K, Bomanji J, Moyes J, Mather S, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:513-21.

    Article  CAS  PubMed  Google Scholar 

  6. Bombardieri E, Giammarile F, Aktolun C, et al. (131)I/ (123)I-Metaiodobenzylguanidine (mIBG) scintigraphy: Procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436-46.

    Article  PubMed  Google Scholar 

  7. Travin M. Cardiac radionuclide imaging to assess patients with heart failure. Semin Nucl Med. 2014;44:294-313.

    Article  PubMed  Google Scholar 

  8. Stefanelli A, Treglia G, Bruno I, Rufini V, Giordano A. Pharmacological interference with 123I-metaiodobenzylguanidine: A limitation to developing cardiac innervation imaging in clinical practice? Eur Rev Med Pharmacol Sci. 2013;17:1326-33.

    CAS  PubMed  Google Scholar 

  9. Blake GM, Lewington VJ, Fleming JS, Zivanovic MA, Ackery DM. Modification by nifedipine of 131I-meta-iodobenzylguanidine kinetics in malignant phaeochromocytoma. Eur J Nucl Med. 1988;14:345-8.

    CAS  PubMed  Google Scholar 

  10. Estorch M, Carrio I, Mena E, Flotats A, et al. Challenging the neuronal MIBG uptake by pharmacological intervention: Effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake. Eur J Nucl Med Mol Imaging. 2004;31:1575-80.

    Article  CAS  PubMed  Google Scholar 

  11. Gulati V, Ching G, Heller GV. The role of radionuclide imaging in heart failure. J Nucl Cardiol. 2013;20:1173-83.

    Article  PubMed  Google Scholar 

  12. Jain KK, Hauptman PJ, Spertus JA, et al. Incremental utility of iodine-123 meta-iodobenzylguanidine imaging beyond established heart failure risk models. J Card Failure. 2014;20:577-83.

    Article  Google Scholar 

  13. Suwa M, Otake Y, Moriguchi A, et al. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J. 1997;133:353-8.

    Article  CAS  PubMed  Google Scholar 

  14. Yamazaki J, Muto H, Kabano T, Yamashina S, Nanjo S, Inoue A. Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy—clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J. 2001;141:645-52.

    Article  CAS  PubMed  Google Scholar 

  15. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effect of spironolactone on cardiac sympathetic nerve activity and left ventricular remodeling in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2003;41:574-81.

    Article  CAS  PubMed  Google Scholar 

  16. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med. 2003;44:884-90.

    CAS  PubMed  Google Scholar 

  17. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: Comparison with enalapril. Eur J Nucl Med Mol Imaging. 2005;32:964-71.

    Article  CAS  PubMed  Google Scholar 

  18. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2005;45:661-7.

    Article  CAS  PubMed  Google Scholar 

  19. Treglia G, Stefanelli A, Bruno I, Giordano A. Clinical usefulness of myocardial innervation imaging using Iodine-123-meta-iodobenzylguanidine scintigraphy in evaluating the effectiveness of pharmacological treatments in patients with heart failure: An overview. Eur Rev Med Pharmacol Sci. 2013;17:56-68.

    CAS  PubMed  Google Scholar 

  20. Apeldoorn L, Voerman HJ, Hoefnagel CA. Interference of MIBG uptake by medication: A case report. Neth J Med. 1995;46:239-43.

    Article  CAS  PubMed  Google Scholar 

  21. Babich JW, Graham W, Fischman AJ. Effect of adrenergic receptor ligands on metaiodobenzylguanidine uptake and storage in neuroblastoma cells. Eur J Nucl Med. 1997;24:538-43.

    CAS  PubMed  Google Scholar 

  22. Blake GM, Lewington VJ, Zivanovic MA, Ackery DM. Glomerular filtration rate and the kinetics of 123I-metaiodobenzylguanidine. Eur J Nucl Med. 1989;15:618-23.

    CAS  PubMed  Google Scholar 

  23. Cornelissen J, Tytgat GA, Van den Brug M, et al. Menadione inhibits MIBG uptake in two neuroendocrine cell lines. J Neurooncol. 1997;31:147-51.

    Article  CAS  PubMed  Google Scholar 

  24. Degrado TR, Zalutsky MR, Vaidyanathan G. Uptake mechanisms of meta-123I-iodobenzylguanidine in isolated rat heart. Nucl Med Biol. 1995;22:1-12.

    Article  CAS  PubMed  Google Scholar 

  25. Fagret D, Wolf JE, Comet M. Myocardial uptake of meta-[123I]-iodobenzylguanidine [(123I]-MIBG) in patients with myocardial infarct. Eur J Nucl Med. 1989;15:624-8.

    Article  CAS  PubMed  Google Scholar 

  26. Fagret D, Wolf JE, Vanzetto G, Borrel E. Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to valvular aortic stenosis. J Nucl Med. 1993;34:57-60.

    CAS  PubMed  Google Scholar 

  27. Gasnier B, Roisin MP, Scherman D, Coornaert S, Desplanches G, Henry JP. Uptake of meta-iodobenzylguanidine by bovine chromaffin granule membranes. Mol Pharmacol. 1986;29:275-80.

    CAS  PubMed  Google Scholar 

  28. Gross MD, Shapiro B, Sisson JC, Zweifler A. Clonidine-induced suppression of plasma catecholamines in states of adrenal medulla hyperfunction. J Endocrinol Investig. 1987;10:359-64.

    Article  CAS  Google Scholar 

  29. Guilloteau D, Baulieu JL, Huguet F, et al. Meta-iodobenzylguanidine adrenal medulla localization: autoradiographic and pharmacologic studies. Eur J Nucl Med. 1984;9:278-81.

    Article  CAS  PubMed  Google Scholar 

  30. Guilloteau D, Chalon S, Baulieu JL, et al. Comparison of MIBG and monoamines uptake mechanisms: pharmacological animal and blood platelets studies. Eur J Nucl Med. 1988;14:341-4.

    CAS  PubMed  Google Scholar 

  31. Harada K, Nomura M, Nishikado A, Uehara K, Nakaya Y, Ito S. Clinical efficacy of efonidipine hydrochloride, a T-type calcium channel inhibitor, on sympathetic activities. Circ J. 2003;67:139-45.

    Article  CAS  PubMed  Google Scholar 

  32. Hoefnagel CA, Schornagel J, Valdes Olmos RA. [131I]metaiodobenzylguanidine therapy of malignant pheochromocytoma: Interference of medication. J Nucl Biol Med. 1991;35:308-12.

    CAS  PubMed  Google Scholar 

  33. Huguet F, Fagret D, Caillet M, Piriou A, Besnard JC, Guilloteau D. Interaction of metaiodobenzylguanidine with cardioactive drugs: An in vitro study. Eur J Nucl Med. 1996;23:546-9.

    Article  PubMed  Google Scholar 

  34. Ito K, Sugihara H, Nishikawa S, et al. [Clinical usefulness of a dual L/N-type Ca2+ channel blocker, cilnidipine, in patients with chronic heart failure: assessment with 123I-MIBG myocardial scintigraphy]. Kaku Igaku. 2003;40:421-30.

    PubMed  Google Scholar 

  35. Jaques S Jr, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: Evidence for uptake-one. Cancer Res. 1987;47:3920-8.

    PubMed  Google Scholar 

  36. Jaques S Jr, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependency of uptake of meta-lodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol. 1984;26:539-46.

    CAS  PubMed  Google Scholar 

  37. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481-9.

    CAS  PubMed  Google Scholar 

  38. Ko BH, Paik JY, Jung KH, et al. Effects of anesthetic agents on cellular (123)I-MIBG transport and in vivo (123)I-MIBG biodistribution. Eur J Nucl Med Mol Imaging. 2008;35:554-61.

    Article  CAS  PubMed  Google Scholar 

  39. Kosaka T, Nakagawa M, Ishida M, et al. Cardioprotective effect of an L/N-type calcium channel blocker in patients with hypertensive heart disease. J Cardiol. 2009;54:262-72.

    Article  PubMed  Google Scholar 

  40. Lashford LS, Hancock JP, Kemshead JT. Meta-iodobenzylguanidine (mIBG) uptake and storage in the human neuroblastoma cell line SK-N-BE(2C). Int J Cancer. 1991;47:105-9.

    Article  CAS  PubMed  Google Scholar 

  41. Lee KH, Ko BH, Paik JY, et al. Characteristics and regulation of 123I-MIBG transport in cultured pulmonary endothelial cells. J Nucl Med. 2006;47:437-42.

    CAS  PubMed  Google Scholar 

  42. Mairs RJ, Gaze MN, Barrett A. The uptake and retention of metaiodobenzyl guanidine by the neuroblastoma cell line NB1-G. Br J Cancer. 1991;64:293-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mayer S, Karanikas G, Rodrigues M, Sinzinger H. Influence of drugs on myocardial iodine-123 metaiodobenzylguanidine uptake in rabbit myocardium. Eur J Nucl Med. 2000;27:340-5.

    Article  CAS  PubMed  Google Scholar 

  44. Morais J, Le Marec H, Peltier P, et al. MIBG scintigraphy of a patient with pheochromocytoma on labetalol therapy. Clin Nucl Med. 1992;17:308-11.

    Article  CAS  PubMed  Google Scholar 

  45. Muraoka T, Oku E, Sugataka K, Yamada S. A case of severe parkinsonism associated with short-term treatment with milnacipran. Clin Neuropharmacol. 2008;31:299-300.

    Article  PubMed  Google Scholar 

  46. Nakajo M, Shapiro B, Sisson JC, Swanson DP, Beierwaltes WH. Salivary gland accumulation of meta-131I-iodobenzylguanidine. J Nucl Med. 1984;25:2-6.

    CAS  PubMed  Google Scholar 

  47. Nori S, Calcagn ML, Martire M, et al. Scintigraphic imaging of neuroadrenergic cardiac function: An in vitro and in-vivo study. Biomed Res. 2003;14:11-6.

    Google Scholar 

  48. Rutgers M, Tytgat GA, Verwijs-Janssen M, Buitenhuis C, Voute PA, Smets LA. Uptake of the neuron-blocking agent meta-iodobenzylguanidine and serotonin by human platelets and neuro-adrenergic tumour cells. Int J Cancer. 1993;54:290-5.

    Article  CAS  PubMed  Google Scholar 

  49. Sakaki T, Naruse H, Masai M, et al. Cilnidipine as an agent to lower blood pressure without sympathetic nervous activation as demonstrated by iodine-123 metaiodobenzylguanidine imaging in rat hearts. Ann Nucl Med. 2003;17:321-6.

    Article  CAS  PubMed  Google Scholar 

  50. Sakata K, Shirotani M, Yoshida H, Kurata C. Comparison of effects of enalapril and nitrendipine on cardiac sympathetic nervous system in essential hypertension. J Am Coll Cardiol. 1998;32:438-43.

    Article  CAS  PubMed  Google Scholar 

  51. Sakata K, Shirotani M, Yoshida H, et al. Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension. Hypertension. 1999;33:1447-52.

    Article  CAS  PubMed  Google Scholar 

  52. Sakata K, Yoshida H, Tamekiyo H, et al. Comparative effect of clinidipine and quinapril on left ventricular mass in mild essential hypertension. Drugs Exp Clin Res. 2003;29:117-23.

    CAS  PubMed  Google Scholar 

  53. Sawka AM, Young WF, Schaff HV. Cardiac phaeochromocytoma presenting with severe hypertension and chest pain. Clin Endocrinol (Oxf). 2001;54:689-92.

    Article  CAS  Google Scholar 

  54. Schwebel C, Fagret D, Tremel F, et al. Action of labetalol on norepinephrine myocardial content in left ventricular hypertrophy in hypertensive patients. Arch Mal Coeur Vaiss. 1992;85:1103-6.

    CAS  PubMed  Google Scholar 

  55. Sisson JC, Frager MS, Valk TW, et al. Scintigraphic localization of pheochromocytoma. New Engl J Med. 1981;305:12-7.

    Article  CAS  PubMed  Google Scholar 

  56. Sisson JC, Shapiro B, Meyers L, et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med. 1987;28:1625-36.

    CAS  PubMed  Google Scholar 

  57. Sisson JC, Wieland DM, Jaques S Jr, et al. Radiolabeled meta-iodobenzylguanidine and the adrenergic neurons of salivary glands. Am J Physiol Imaging. 1987;2:1-9.

    CAS  PubMed  Google Scholar 

  58. Sisson JC, Wieland DM, Sherman P, Mangner TJ, Tobes MC, Jacques S Jr. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function. J Nucl Med. 1987;28:1620-4.

    CAS  PubMed  Google Scholar 

  59. Smets LA, Janssen M, Metwally E, Loesberg C. Extragranular storage of the neuron blocking agent meta-iodobenzylguanidine (MIBG) in human neuroblastoma cells. Biochem Pharmacol. 1990;39:1959-64.

    Article  CAS  PubMed  Google Scholar 

  60. Tachikawa H, Kodama M, Watanabe K, et al. Amiodarone improves cardiac sympathetic nerve function to hold norepinephrine in the heart, prevents left ventricular remodeling, and improves cardiac function in rat dilated cardiomyopathy. Circulation. 2005;111:894-9.

    Article  CAS  PubMed  Google Scholar 

  61. Tobes MC, Jaques S Jr, Wieland DM, Sisson JC. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med. 1985;26:897-907.

    CAS  PubMed  Google Scholar 

  62. Toyama T, Hoshizaki H, Seki R, et al. Efficacy of amiodarone treatment on cardiac symptom, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: Comparison with [beta]-blocker therapy. J Nucl Cardiol. 2004;11:134-41.

    Article  PubMed  Google Scholar 

  63. Toyama T, Hoshizaki H, Yoshimura Y, et al. Combined therapy with carvedilol and amiodarone is more effective in improving cardiac symptoms, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: Comparison with carvedilol therapy alone. J Nucl Cardiol. 2008;15:57-64.

    Article  PubMed  Google Scholar 

  64. Wakabayashi Y, Kurata C, Mikami T, Shouda S, Okayama K, Tawarahara K. Effects of cilazapril and verapamil on myocardial iodine-125-metaiodobenzylguanidine accumulation in cardiomyopathic BIO 53.58 hamsters. J Nucl Med. 1997;38:1540-5.

    CAS  PubMed  Google Scholar 

  65. Wieland DM, Brown LE, Rogers WL, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med. 1981;22:22-31.

    CAS  PubMed  Google Scholar 

  66. Wieland DM, Brown LE, Tobes MC, et al. Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: Concise communication. J Nucl Med. 1981;22:358-64.

    CAS  PubMed  Google Scholar 

  67. Yokoyama K, Yamada T, Terachi S, et al. Milnacipran influences the indexes of I-metaiodobenzylguanidine scintigraphy in elderly depressed patients. Psychiatr Clin Neurosci. 2014;68:169-75.

    Article  CAS  Google Scholar 

  68. Zaplatnikov K, Menzel C, Dobert N, et al. Case report: Drug interference with MIBG uptake in a patient with metastatic paraganglioma. Br J Radiol. 2004;77:525-7.

    Article  CAS  PubMed  Google Scholar 

  69. Nomura Y, Matsunari I, Takamatsu H, et al. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: Relation to 123I-MIBG uptake. Eur J Nucl Med Mol Imaging. 2006;33:871-8.

    Article  PubMed  Google Scholar 

  70. Rischpler C, Fukushima K, Isoda T, et al. Discrepant uptake of the radiolabeled norepinephrine analogues hydroxyephedrine (HED) and metaiodobenzylguanidine (MIBG) in rat hearts. Eur J Nucl Med Molec Imaging. 2013;40:1077-83.

    Article  CAS  Google Scholar 

  71. Shapiro B, Wieland D, Brown L, et al. I-131-metaiodobenzylguanidine (MIBG) adrenal medullary scintigraphy. Interventional studies. In: Spencer RD, editor. Interventional nuclear medicine. Grune and Stratton: Orlando; 1984. p. 451-81.

    Google Scholar 

  72. Corbett RP, Peacock J, Meller ST. Inhibition of 125I metaiodobenzylguanidine (mIBG) uptake into neuroblastoma monolayers by antiemetic agents (abstr). Eur J Nucl Med. 1991;18:678.

    Google Scholar 

  73. Jaques S, Tobes MC, Sisson JC, et al. Effect of calcium channel blockers on acetylcholine stimulated and basal release of metaiodobenzylguanidine and norepinephrine in cultured bovine adrenomedullary cells (abstr). J Nucl Med. 1987;28:639-40.

    Google Scholar 

  74. Sherman PS, Fisher SJ, Wieland DM, Sisson JC. Over the counter drugs block heart accumulation of MIBG (abstr). J Nucl Med. 1985;26:P35.

    Google Scholar 

  75. Doggrell SA, Patton DM. Effect of labetalol on the accumulation and release of noradrenaline in rat ventricle. Eur J Pharmacol. 1978;51:303-7.

    Article  CAS  PubMed  Google Scholar 

  76. Role LW, Perlman RL. Catecholamine uptake into isolated adrenal chromaffin cells: Inhibition of uptake by acetylcholine. Neuroscience. 1983;10:987-96.

    Article  CAS  PubMed  Google Scholar 

  77. Daly JW, Creveling CR, Witkop B. The chemorelease of norepinephrine from mouse hearts. Structure-activity relationships. I. Sympathomimetic and related amines. J Med Chem. 1966;9:273-80.

    Article  CAS  PubMed  Google Scholar 

  78. Daly JW, Creveling CR, Witkop B. The chemorelease of norepinephrine in mouse hearts. Structure-activity relationships. II. Drugs affecting the sympathetic and central nervous systems. J Med Chem. 1966;9:280-4.

    Article  CAS  PubMed  Google Scholar 

  79. Starke K. Influences of phenylephrine and orciprenaline on the release of noradrenaline. Experientia. 1973;29:579-80.

    Article  CAS  PubMed  Google Scholar 

  80. Malizia AL, Melichar JK, Rhodes CG, et al. Desipramine binding to noradrenaline reuptake sites in cardiac sympathetic neurons in man in vivo. Eur J Pharmacol. 2000;391:263-7.

    Article  CAS  PubMed  Google Scholar 

  81. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: Retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34:1287-93.

    CAS  PubMed  Google Scholar 

  82. Sekine M, Arakawa R, Ito H, et al. Norepinephrine transporter occupancy by antidepressant in human brain using positron emission tomography with (S, S)-[18F]FMeNER-D2. Psychopharmacology. 2010;210:331-6.

    Article  CAS  PubMed  Google Scholar 

  83. Takano A, Nag S, Gulyas B, Halldin C, Farde L. NET occupancy by clomipramine and its active metabolite, desmethylclomipramine, in non-human primates in vivo. Psychopharmacology (Berl). 2011;216:279-86.

    Article  CAS  Google Scholar 

  84. Nogami T, Takano H, Arakawa R, et al. Occupancy of serotonin and norepinephrine transporter by milnacipran in patients with major depressive disorder: A positron emission tomography study with [11C]DASB and (S, S)-[18F]FMeNER-D2. Int J Neuropsychopharmacol. 2013;16:937-43.

    Article  CAS  PubMed  Google Scholar 

  85. Takano H, Arakawa R, Nogami T, et al. Norepinephrine transporter occupancy by nortriptyline in patients with depression: A positron emission tomography study with (S, S)-[18F]FMeNER-D2. Int J Neuropsychopharmacol. 2014;17:553-60.

    Article  CAS  PubMed  Google Scholar 

  86. Douglas WW, Kanno T. The effect of amethocaine on acetylcholine-induced depolarization and catecholamine secretion in the adrenal chromaffin cell. Br J Pharmacol. 1967;30:612-9.

    CAS  Google Scholar 

  87. Llinás R, Steinberg IZ, Walton K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J. 1981;33:323-51.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Ackerknecht EH. History of the discovery of the vegetative (autonomic) nervous system. Med Hist. 1974;18:1-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Chidsey CA, Braunwald E, Morrow AC. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med. 1965;39:442-51.

    Article  CAS  PubMed  Google Scholar 

  90. Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D. Sympathetic nerve activity and neurotransmitter release in humans: Translation from pathophysiology into clinical practice. Acta Physiol Scand. 2003;177:275-84.

    Article  CAS  PubMed  Google Scholar 

  91. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-Iodobenzylguanidine imaging and cardiac events in heart failure: Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212-21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold F. Jacobson MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, A.F., Travin, M.I. Impact of medications on mIBG uptake, with specific attention to the heart: Comprehensive review of the literature. J. Nucl. Cardiol. 22, 980–993 (2015). https://doi.org/10.1007/s12350-015-0170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0170-z

Keywords

Navigation