Skip to main content
Log in

Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Introduction

Myocardial perfusion single photon emission computed tomography (MPS) is one of the most widely used diagnostic methods in patients with suspected ischemic heart disease (IHD). Recently, a novel technique based on cadmium-zinc-telluride (CZT) detectors, pinhole collimators, and a stationary gantry was introduced for MPS. The aim of this work was to investigate how patient positioning affects the reconstructed MPS images using this novel technique.

Materials and Methods

Eighteen patients referred for a clinical MPS due to suspected IHD were included in the study. All patients underwent MPS imaging on a GE Discovery NM 530c CZT camera. After image acquisition with the heart positioned in the center of the quality field of view (QFOV), the patients were re-imaged in different positions 5-20 mm off-center. The heart was still positioned within the limits of the QFOV during the off-center scans. The summed stress score and/or the summed rest score (SSS and/or SRS) for the acquisition performed in the center was compared to the same parameter for the acquisitions performed off-center.

Results

There was a statistically significant increase in SSS and/or SRS when imaging was performed with the heart 5-20 mm outside the center of the QFOV compared to optimal positioning (7.7 ± 1.3 vs 6.6 ± 1.3, P = .006). The SSS and/or SRS increased with ≥2 U in 35% (14/40) of the off-center examinations.

Conclusion

It is important to carefully position the patient’s heart within the center of the QFOV when performing MPS with the Discovery NM 530c CZT camera to avoid positioning-related image artifacts that could affect the diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 2006;367:1747-57.

    Article  PubMed  Google Scholar 

  2. Gheorghiade M, Bonow RO. Chronic heart failure in the United States: A manifestation of coronary artery disease. Circulation 1998;97:282-9.

    Article  CAS  PubMed  Google Scholar 

  3. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535-43.

    Article  CAS  PubMed  Google Scholar 

  4. Hachamovitch R, Hayes S, Friedman JD, Cohen I, Shaw LJ, Germano G, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: What is the warranty period of a normal scan? J Am Coll Cardiol 2003;41:1329-40.

    Article  PubMed  Google Scholar 

  5. Hachamovitch R, Rozanski A, Hayes SW, Thomson LE, Germano G, et al. Predicting therapeutic benefit from myocardial revascularization procedures: Are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol 2006;13:768-78.

    Article  PubMed  Google Scholar 

  6. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization. Eur Heart J 2010;31:2501-55.

    Article  PubMed  Google Scholar 

  7. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-903.

    Article  PubMed  Google Scholar 

  8. Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera. J Nucl Cardiol 2010;17:1009-14.

    Article  PubMed  Google Scholar 

  9. Oddstig J, Hedeer F, Jogi J, Carlsson M, Hindorf C, Engblom H. Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. J Nucl Cardiol 2013;20:38-44.

    Article  PubMed  Google Scholar 

  10. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.

    Article  PubMed  Google Scholar 

  11. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.

    Article  PubMed  Google Scholar 

  13. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: A feasibility study. J Nucl Med 2013;54:873-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fiechter M, Gebhard C, Fuchs TA, Ghadri JR, Stehli J, Kazakauskaite E, et al. Cadmium-zinc-telluride myocardial perfusion imaging in obese patients. J Nucl Med 2012;53:1401-6.

    Article  CAS  PubMed  Google Scholar 

  16. Herzog BA, Buechel RR, Husmann L, Pazhenkottil AP, Burger IA, Wolfrum M, et al. Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med 2010;51:1539-44.

    Article  PubMed  Google Scholar 

  17. Rajaram M, Tahari AK, Lee AH, Lodge MA, Tsui B, Nekolla S, et al. Cardiac PET/CT misregistration causes significant changes in estimated myocardial blood flow. J Nucl Med 2013;54:50-4.

    Article  PubMed  Google Scholar 

  18. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.

    Article  PubMed  Google Scholar 

Download references

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Hindorf PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindorf, C., Oddstig, J., Hedeer, F. et al. Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera. J. Nucl. Cardiol. 21, 695–702 (2014). https://doi.org/10.1007/s12350-014-9897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-9897-1

Keywords

Navigation