Skip to main content
Log in

Linear relation between spirometric volume and the motion of cardiac structures: MRI and clinical PET study

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

In cardiac PET, CT, and MRI respiration is major reason for impaired image quality of small targets such as coronary arteries. Strong correlations between heart motion and respiratory signals have been detected but quantitative relation between signals and motion of cardiac structures in MRI or PET is not reported .

Methods

Relation between spirometric lung volume or pressure belt signal and motion of coronary vessels in MRI was studied on nine healthy volunteers. Spirometry was further applied to 18F-FDG cardiac PET study to determine quantitative relation between volume change and motion of center of myocardium activity (CMA) on nine CAD patients.

Results

Correlation coefficients (CC) between vessel motions and volume or pressure changes were 0.90-0.92 or 0.86-0.84, respectively. The linear equations based on volume or pressure changes derived 2.0-2.6 or 2.9-3.3 mm mean estimation error for vessel motions. In PET CC value of 0.93 was determined between volume changes and CMA motions. The linear equation based on volume change derived maximum estimation error of 2.5 mm for CMA motion.

Conclusion

The spirometric volume change linearly estimates motion of myocardium in PET with good accuracy and have potential to guide selection of optimal number of respiratory gates in cardiac PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Daou D. Respiratory motion handling is mandatory to accomplish the high-resolution PET destiny. Eur J Nucl Med Mol Imaging 2008;35:1961-70.

    Article  PubMed  Google Scholar 

  2. Scott AD, Keegan J, Firmin DN. Motion in cardiovascular MR imaging. Radiology 2009;250:331-51.

    Article  PubMed  Google Scholar 

  3. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33:713-9.

    Article  CAS  PubMed  Google Scholar 

  4. Feinberg DA, Johnson G. A methodology for co-registering abdominal MR images over multiple breath-holds. Magn Reson Med 1995;34(5):770-4.

    Article  CAS  PubMed  Google Scholar 

  5. Feinberg DA, Rofsky NM, Johnson G. Multiple breath-hold averaging (MBA) method for increased SNR in abdominal MRI. Magn Reson Med 1995;34(6):905-9.

    Article  CAS  PubMed  Google Scholar 

  6. Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674-81.

    Article  PubMed  Google Scholar 

  7. Büther F, Ernst I, Dawood M, Kraxner P, Schäfers M, Schober O, et al. Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 2010;37:2315-27.

    Article  PubMed  Google Scholar 

  8. Li XA, Stepaniak C, Gore E. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys 2006;33:145-54.

    Article  PubMed  Google Scholar 

  9. Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB. Magnetic resonance imaging with respiratory gating: Techniques and advantages. AJR Am J Roentgenol 1984;143:1175-82.

    Article  CAS  PubMed  Google Scholar 

  10. Nehmeh SA, Erdi YE, Pan T, Yorke E, Mageras GS, Rosenzweig KE, et al. Quantitation of respiratory motion during 4D-PET/CT acquisition. Med Phys 2004;31(6):1333-8.

    Article  CAS  PubMed  Google Scholar 

  11. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43(7):876-81.

    PubMed  Google Scholar 

  12. Zhang T, Keller H, O’Brien MJ, Mackie TR, Paliwal B. Application of the spirometer in respiratory gated radiotherapy. Med Phys 2003;30:3165-71.

    Article  PubMed  Google Scholar 

  13. Kalender WA, Rienmüller R, Seissler W, Behr J, Welke M, Fichte H. Measurement of pulmonary parenchymal attenuation: Use of spirometric gating with quantitative CT. Radiology 1990;175:265-8.

    Article  CAS  PubMed  Google Scholar 

  14. Zubal IG, Bizais Y, Bennett GW, Brill AB. Dual gated nuclear cardiac images. IEEE Trans Nucl Sci 1984;31:566-9.

    Article  Google Scholar 

  15. Wadhwani R, Longini RL. Analysis of quiet spontaneous breathing as measured by spirometer and electrical impedance plethysmography. Comput Biomed Res 1973;6:74-89.

    Article  CAS  PubMed  Google Scholar 

  16. Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, et al. Respiratory bellows revisited for motion compensation: Preliminary experience for cardiovascular MR. Magn Reson Med 2011;65:1097-102.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vedam SS, Kini VR, Keall PJ, Ramakrishnan V, Mostafavi H, Mohan R. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 2003;30:505-13.

    Article  CAS  PubMed  Google Scholar 

  18. Kokki T, Sipilä HT, Teräs M, Noponen T, Durand-Schaefer N, Klén R, et al. Dual gated PET/CT imaging of small targets of the heart: Method description and testing with a dynamic heart phantom. J Nucl Cardiol 2009;17:71-84.

    Article  Google Scholar 

  19. Teräs M, Kokki T, Durand-Schaefer N, Noponen T, Pietilä M, Kiss J, et al. Dual-gated cardiac PET-clinical feasibility study. Eur J Nucl Med Mol Imaging 2010;37:505-16.

    Article  PubMed  Google Scholar 

  20. Alessio AM, Kohlmyer S, Branch K, Chen G, Caldwell J, Kinahan P. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med 2007;48:794-801.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brown C, Dempsey M-F, Gillen G, Elliott AT. Investigation of 18F-FDG 3D mode PET image quality versus acquisition time. Nucl Med Commun 2010;31:254-9.

    Article  PubMed  Google Scholar 

  22. Dodge JT, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992;86:232-46.

    Article  PubMed  Google Scholar 

  23. Dawood M, Büther F, Stegger L, Jiang X, Schober O, Schäfers M, et al. Optimal number of respiratory gates in positron emission tomography: A cardiac patient study. Med Phys 2009;36:1775-84.

    Article  PubMed  Google Scholar 

  24. Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 1967;22:407-22.

    CAS  PubMed  Google Scholar 

  25. Gribbin HR. Using body surface movements to study breathing. J Med Eng Technol 1983;7:217-23.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Vidan E, Bergman GW. Cardiac imaging cardiac motion of coronary arteries: Variability in the rest. Radiology 1999;213:751-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank GE Healthcare for providing RGT software in our use. This study was conducted within the “Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research” supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Academy.

Disclosures

The authors do not have any disclosures or conflict of interest and we transfer copyright to American Society of Nuclear Cardiology, Journal of Nuclear Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Kokki MD, MSc.

Additional information

See related editorial, doi:10.1007/s12350-015-0094-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokki, T., Klén, R., Noponen, T. et al. Linear relation between spirometric volume and the motion of cardiac structures: MRI and clinical PET study. J. Nucl. Cardiol. 23, 475–485 (2016). https://doi.org/10.1007/s12350-014-0057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-0057-4

Keywords

Navigation