Skip to main content

Advertisement

Log in

Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Purpose

Correction for photon attenuation and scatter improves image quality with conventional NaI-based gamma cameras but evaluation of these corrections for novel solid-state dedicated cardiac cameras is limited. In this study, we assess the accuracy of dual-energy-window (DEW) scatter correction (SC) applied to clinically acquired 99mTc-tetrofosmin myocardial perfusion images obtained on a dedicated multi-pinhole camera with cadmium-zinc-telluride (CZT) detectors (GE Discovery NM530) compared to DEW scatter-corrected images from our conventional SPECT camera (GE Infinia Hawkeye 4; INF).

Methods

A modified DEW SC method was formulated to account for the detection of primary photons in the lower energy window (120 keV ± 5%) with CZT detectors, in addition to estimating the scattered photons detected in the photopeak window (140 keV ± 10%). Phantom experiments were used to estimate the DEW correction parameters. Data from 108 patients, acquired using a standard rest/stress Tc-99m-tetrofosmin SPECT/CT protocol on both cameras, were reconstructed with no correction (NC), attenuation correction (AC), and AC with DEW-SC. Images were compared based on the summed stress/rest/difference scores (SSS/SRS/SDS) calculated by clinical software.

Results

The correlation between SSS/SRS for the two cameras was excellent (r ≥ 0.94). The mean difference between cameras was <0.4 for SSS/SRS/SDS scores. Since datasets did not follow a normal distribution, non-parametric tests were used to show significant differences between datasets. Classification of disease (SSS) was highly correlated, as ranked by the two cameras (kendall’s tau = 0.72, P < .001). AC significantly reduced the mean difference between the two cameras for SSS/SRS compared to NC. AC without SC on the CZT introduced a bias towards higher scores when compared to the INF, which was reduced after applying SC. Although SC increased noise, the scores for the AC/SC images were not significantly different between the two cameras (P > .1).

Conclusions

DEW-SC on the CZT camera was feasible and produced images that are not significantly different from those acquired on the INF camera. Although use of SC on CZT images does increase noise, the resultant noise does not introduce bias relative to the INF camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16(6):927-34. doi:10.1007/s12350-009-9137-2.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Tsui BM, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30(4):497-507.

    CAS  PubMed  Google Scholar 

  3. Herzog BA, Buechel RR, Husmann L, Pazhenkottil AP, Burger IA, Wolfrum M, et al. Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med 2010;51(10):1539-44. doi:10.2967/jnumed.110.078170.

    Article  PubMed  Google Scholar 

  4. King MA, Tsui BM, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 1995;2(6):513-24.

    Article  CAS  PubMed  Google Scholar 

  5. Khalil M, Brown E, Heller E. Does scatter correction of cardiac SPECT improve image quality in the presence of high extracardiac activity? J Nucl Cardiol 2004;11(4):424-32. doi:10.1016/j.nuclcard.2004.03.031.

    Article  PubMed  Google Scholar 

  6. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54(9):2635-49. doi:10.1088/0031-9155/54/9/003.

    Article  PubMed  Google Scholar 

  7. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37(10):1887-902. doi:10.1007/s00259-010-1488-z.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Frey EC, Tsui BMW, editors. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. In: IEEE nuclear science symposium, conference record, 1996, 2-9 Nov 1996.

  9. De Jong HWAM, Slijpen TP, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Trans Nucl Sci 2001;48(1):58-64. doi:10.1109/23.910833.

    Article  Google Scholar 

  10. Beekman FJ, Kamphuis C, Viergever MA. Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation. IEEE Trans Med Imaging 1996;15(4):491-9. doi:10.1109/42.511752.

    Article  CAS  PubMed  Google Scholar 

  11. Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol 2011;56(14):R85-112.

    Article  PubMed  Google Scholar 

  12. Xiao J, Verzijlbergen F, Viergever M, Beekman F. Small field-of-view dedicated cardiac SPECT systems: Impact of projection truncation. Eur J Nucl Med Mol Imaging 2010;37(3):528-36. doi:10.1007/s00259-009-1223-9.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10(3):408-12.

    Article  CAS  PubMed  Google Scholar 

  14. Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25(8):893-900.

    CAS  PubMed  Google Scholar 

  15. Wells RG, Soueidan K, Timmins R, Ruddy TD. Comparison of attenuation, dual-energy-window, and model-based scatter correction of low-count SPECT to Rb PET/CT quantified myocardial perfusion scores. J Nucl Cardiol 2013;. doi:10.1007/s12350-013-9738-7.

    Google Scholar 

  16. Farncombe TH, Gifford HC, Narayanan MV, Pretorius PH, Frey EC, King MA. Assessment of scatter compensation strategies for (67)Ga SPECT using numerical observers and human LROC studies. J Nucl Med 2004;45(5):802-12.

    PubMed  Google Scholar 

  17. Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution of simultaneous 99mTc and 201Tl projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol 2011;56(5):1397-414. doi:10.1088/0031-9155/56/5/012.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 2010;37(9):1710-21. doi:10.1007/s00259-010-1441-1.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wagenaar DJ. Emission tomography: The fundamentals of PET and SPECT: Ch15. CdTe and CdZnTe semiconductor detectors for nuclear medicine imaging. Amsterdam: Academic Press; 2004.

    Google Scholar 

  20. Hansen CL, Goldstein RA, Berman DS, Churchwell KB, Cooke CD, Corbett JR, et al. Myocardial perfusion and function single photon emission computed tomography. J Nucl Cardiol 2006;13(6):e97-120. doi:10.1016/j.nuclcard.2006.08.008.

    Article  PubMed  Google Scholar 

  21. Wells RG, Soueidan K, Vanderwerf K, Ruddy T. Comparing slow-versus high-speed CT for attenuation correction of cardiac SPECT perfusion studies. J Nucl Cardiol 2012;19(4):719-26. doi:10.1007/s12350-012-9555-4.

    Article  PubMed  Google Scholar 

  22. Wells RG, Vanderwerf K, Ali I, Peretz A, Kovalski G, Ruddy T. CT attenuation correction for a cadmium zinc telluride dedicated cardiac SPECT camera. In: Society of nuclear medicine annual meeting abstracts; May 11, 2010. p. 547.

  23. Esteves FP, Galt JR, Folks RD, Verdes L, Garcia EV. Diagnostic performance of low-dose rest/stress Tc-99m tetrofosmin myocardial perfusion SPECT using the 530c CZT camera: Quantitative vs visual analysis. J Nucl Cardiol 2014;21(1):158-65. doi:10.1007/s12350-013-9827-7.

    Article  PubMed  Google Scholar 

  24. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97(6):535-43.

    Article  CAS  PubMed  Google Scholar 

  25. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: Incremental prognostic value and use in risk stratification. Circulation 1996;93(5):905-14.

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann Nucl Med 1994;8(4):277-81. doi:10.1007/bf03165031.

    Article  PubMed  Google Scholar 

  27. Ali I, Ruddy TD, Almgrahi A, Anstett FG, Wells RG. Half-time SPECT myocardial perfusion imaging with attenuation correction. J Nucl Med 2009;50(4):554-62. doi:10.2967/jnumed.108.058362.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Marlie Poirier, Lyanne Fuller, and the staff in Cardiac Imaging at the University of Ottawa Heart Institute for their assistance. This study was in part funded by the Heart and Stroke foundation, Grant Numbers: NA6939 and BR7489. With regards to our conflicts of interest, R. Glenn Wells and Terrence D. Ruddy collaborate with GE Healthcare on research projects and have received honoraria for speaking at GE Healthcare User Meetings.

Disclosure

With regards to our conflicts of interest, R. Glenn Wells and Terrence D. Ruddy collaborate with GE Healthcare on research projects and have received honoraria for speaking at GE Healthcare User Meetings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Pourmoghaddas MSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmoghaddas, A., Vanderwerf, K., Ruddy, T.D. et al. Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera. J. Nucl. Cardiol. 22, 334–343 (2015). https://doi.org/10.1007/s12350-014-0008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-0008-0

Keywords

Navigation