Skip to main content

Advertisement

Log in

Increased Regional Epicardial Fat Volume Associated with Reversible Myocardial Ischemia in Patients with Suspected Coronary Artery Disease

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 27 March 2015

Abstract

Epicardial adipose tissue is a source of pro-inflammatory cytokines and has been linked to the development of coronary artery disease. No study has systematically assessed the relationship between local epicardial fat volume (EFV) and myocardial perfusion defects. We analyzed EFV in patients undergoing SPECT myocardial perfusion imaging combined with computed tomography (CT) for attenuation correction. Low-dose CT without contrast was performed in 396 consecutive patients undergoing SPECT imaging for evaluation of coronary artery disease. Regional thickness, cross-sectional areas, and total EFV were assessed. 295 patients had normal myocardial perfusion scans and 101 had abnormal perfusion scans. Mean EFVs in normal, ischemic, and infarcted hearts were 99.8 ± 82.3 cm3, 156.4 ± 121.9 cm3, and 96.3 ± 102.1 cm3, respectively (P < 0.001). Reversible perfusion defects were associated with increased local EFV compared to normal perfusion in the distribution of the right (69.2 ± 51.5 vs 46.6 ± 32.0 cm3; P = 0.03) and left anterior descending coronary artery (87.1 ± 76.4 vs 46.7 ± 40.6 cm3; P = 0.005). Our results demonstrate increased regional epicardial fat in patients with active myocardial ischemia compared to patients with myocardial scar or normal perfusion on nuclear perfusion scans. Our results suggest a potential role for cardiac CT to improve risk stratification in patients with suspected coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Batal O, Schoenhagen P, Shao M, Ayyad AE, Van Wagoner DR, Halliburton SS, et al Left atrial epicardial adiposity and atrial fibrillation. Circ Arrhythm Electrophysiol 2010;3:230-6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Doesch C, Haghi D, Fluchter S, Suselbeck T, Schoenberg SO, Michaely H, et al Epicardial adipose tissue in patients with heart failure. J Cardiovasc Magn Reson 2010;12:40.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005;2:536-43.

    Article  PubMed  Google Scholar 

  4. Iacobellis G, Sharma AM. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr Pharm Des 2007;13:2180-4.

    Article  CAS  PubMed  Google Scholar 

  5. Sacks HS, Fain JN. Human epicardial adipose tissue: A review. Am Heart J 2007;153:907-17.

    Article  CAS  PubMed  Google Scholar 

  6. Vela D, Buja LM, Madjid M, Burke A, Naghavi M, Willerson JT, et al The role of periadventitial fat in atherosclerosis. Arch Pathol Lab Med 2007;131:481-7.

    PubMed  Google Scholar 

  7. Baker AR, Harte AL, Howell N, Pritlove DC, Ranasinghe AM, da Silva NF, Youssef EM, et al Epicardial adipose tissue as a source of nuclear factor-kappa b and c-jun n-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab 2009;94:261-7.

    Article  CAS  PubMed  Google Scholar 

  8. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 2006;5:1.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Eiras S, Teijeira-Fernandez E, Shamagian LG, Fernandez AL, Vazquez-Boquete A, Gonzalez-Juanatey JR. Extension of coronary artery disease is associated with increased il-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine 2008;43:174-80.

    Article  CAS  PubMed  Google Scholar 

  10. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 2008;40:442-5.

    Article  CAS  PubMed  Google Scholar 

  11. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003;108:2460-6.

    Article  PubMed  Google Scholar 

  12. Cheng VY, Dey D, Tamarappoo B, Nakazato R, Gransar H, Miranda-Peats R, et al Pericardial fat burden on ecg-gated noncontrast ct in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging 2010;3:352-60.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, et al Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: A segment analysis. Atherosclerosis 2010;211:195-9.

    Article  CAS  PubMed  Google Scholar 

  14. Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, et al Increased pericardial fat volume measured from noncontrast ct predicts myocardial ischemia by spect. JACC Cardiovasc Imaging 2010;3:1104-12.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chaowalit N, Somers VK, Pellikka PA, Rihal CS, Lopez-Jimenez F. Subepicardial adipose tissue and the presence and severity of coronary artery disease. Atherosclerosis 2006;186:354-9.

    Article  CAS  PubMed  Google Scholar 

  16. Ahn SG, Lim HS, Joe DY, Kang SJ, Choi BJ, Choi SY, et al Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart (British Cardiac Society) 2008;94:e7.

    Article  Google Scholar 

  17. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, et al Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. NMCD 2009;19:211-7.

    CAS  PubMed  Google Scholar 

  18. Gorter PM, de Vos AM, van der Graaf Y, Stella PR, Doevendans PA, Meijs MF, et al Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 2008;102:380-5.

    Article  CAS  PubMed  Google Scholar 

  19. de Vos AM, Prokop M, Roos CJ, Meijs MF, van der Schouw YT, Rutten A, et al Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 2008;29:777-83.

    Article  PubMed  Google Scholar 

  20. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al Pericardial adipose tissue determined by dual source ct is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:781-6.

    Article  CAS  PubMed  Google Scholar 

  21. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The framingham heart study. Circulation 2008;117:605-13.

    Article  PubMed  Google Scholar 

  22. Wang TD, Lee WJ, Shih FY, Huang CH, Chen WJ, Lee YT, et al Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis 2010;213:279-87.

    Article  CAS  PubMed  Google Scholar 

  23. Abbara S, Desai JC, Cury RC, Butler J, Nieman K, Reddy V. Mapping epicardial fat with multi-detector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation. Eur J Radiol 2006;57:417-22.

    Article  PubMed  Google Scholar 

  24. Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, et al Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 2008;197:896-903.

    Article  CAS  PubMed  Google Scholar 

  25. Nichols JH, Samy B, Nasir K, Fox CS, Schulze PC, Bamberg F, et al Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: A reproducibility study. J Cardiovasc Comput Tomogr 2008;2:288-95.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al Acc/aha 2002 guideline update for exercise testing: Summary article: A report of the american college of cardiology/american heart association task force on practice guidelines (committee to update the 1997 exercise testing guidelines). Circulation 2002;106:1883-92.

    Article  PubMed  Google Scholar 

  27. Hendel RC, Budoff MJ, Cardella JF, Chambers CE, Dent JM, Fitzgerald DM, et al Acc/aha/acr/ase/asnc/hrs/nasci/rsna/saip/scai/scct/scmr/sir 2008 key data elements and definitions for cardiac imaging a report of the american college of cardiology/american heart association task force on clinical data standards (writing committee to develop clinical data standards for cardiac imaging). J Am Coll Cardiol 2009;53:91-124.

    Article  PubMed  Google Scholar 

  28. Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 2010;210:150-4.

    Article  CAS  PubMed  Google Scholar 

  29. Foster G, Shah H, Sarraf G, Ahmadi N, Budoff M. Detection of noncalcified and mixed plaque by multirow detector computed tomography. Expert Rev Cardiovasc Ther 2009;7:57-64.

    Article  PubMed  Google Scholar 

  30. Janik M, Hartlage G, Alexopoulos N, Mirzoyev Z, McLean DS, Arepalli CD, et al Epicardial adipose tissue volume and coronary artery calcium to predict myocardial ischemia on positron emission tomography-computed tomography studies. J Nucl Cardiol 2010;17:841-7.

    Article  PubMed  Google Scholar 

  31. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, et al Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging 2009;2:153-60.

    Article  PubMed  Google Scholar 

  32. Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Vanhoenacker PK, et al Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv 2008;1:176-82.

    Article  PubMed  Google Scholar 

  33. Laine P, Kaartinen M, Penttila A, Panula P, Paavonen T, Kovanen PT. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 1999;99:361-9.

    Article  CAS  PubMed  Google Scholar 

  34. Ohashi N, Yamamoto H, Horiguchi J, Kitagawa T, Kunita E, Utsunomiya H, et al Association between visceral adipose tissue area and coronary plaque morphology assessed by CT angiography. JACC Cardiovasc Imaging 2010;3:908-17.

    Article  PubMed  Google Scholar 

  35. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard agatston score. J Am Coll Cardiol 2010;56:1914-21.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Dharawat A, Kontak A, Kinkhabwala M, Dey D, Jin Z, Bokhari J, et al Epicardial fat volume: A comparison between coronary artery calcium and attenuation correction image acquisition (abstract #222-04). J Nucl Cardiol 2013;20:672-3.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Grants from the NHLBI (K23 HL095742, P30 HL101272-01, UL1 RR 024156, HL073029) and the Herbert and Florence Irving Scholar Award to Drs. Schulze and Einstein.

Disclosure

None of the authors has any conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Christian Schulze MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawaja, T., Greer, C., Thadani, S.R. et al. Increased Regional Epicardial Fat Volume Associated with Reversible Myocardial Ischemia in Patients with Suspected Coronary Artery Disease. J. Nucl. Cardiol. 22, 325–333 (2015). https://doi.org/10.1007/s12350-014-0004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-0004-4

Keywords

Navigation