Skip to main content
Log in

Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Diabetes is associated with increased sympathetic activity, elevated norepinephrine, impaired heart rate variability, and the added risk of cardiovascular mortality. The temporal development of sympathetic neuronal dysfunction, response to therapy, and relation to ventricular function is not well characterized.

Methods and Results

Sympathetic neuronal integrity was serially investigated in high fat diet-fed streptozotocin diabetic rats using [11C]meta-hydroxyephedrine (HED) positron emission tomography at baseline, 8 weeks of diabetes, and after a further 8 weeks of insulin or insulin-sensitizing metformin therapy. Myocardial HED retention was reduced in diabetic rats (n = 16) compared to non-diabetics (n = 6) at 8 weeks by 52-57% (P = .01) with elevated plasma and myocardial norepinephrine levels. Echocardiography pulse-wave Doppler measurements demonstrated prolonged mitral valve deceleration and increased early-to-atrial filling velocity, consistent with diastolic dysfunction. Insulin but not metformin evoked recovery of HED retention and plasma norepinephrine (P < .05), whereas echocardiography measurements of diastolic function were not improved by either treatment. Relative expressions of norepinephrine reuptake transporter and β-adrenoceptors were lower in metformin-treated as compared to insulin-treated diabetic and non-diabetic rats. Diabetic rats exhibited depressed heart rate variability and impaired diastolic function which persisted despite insulin treatment.

Conclusions

HED imaging provides sound estimation of sympathetic function. Effective glycemic control can recover sympathetic function in diabetic rats without the corresponding recovery of echocardiography indicators of diastolic dysfunction. HED positron emission tomography imaging may be useful in stratifying cardiovascular risk among diabetic patients and in evaluating the effect of glycemic therapy on the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Levin BE, Sullivan AC. Glucose-induced norepinephrine levels and obesity resistance. Am J Physiol 1987;253:R475-81.

    PubMed  CAS  Google Scholar 

  2. Rizk N, Dunbar JC. Insulin-mediated increase in sympathetic nerve activity is attenuated by C-peptide in diabetic rats. Exp Biol Med (Maywood) 2004;229:80-4.

    CAS  Google Scholar 

  3. Florian JP, Pawelczyk JA. Sympathetic and haemodynamic responses to lipids in healthy human ageing. Exp Physiol 2010;95:486-97.

    Article  PubMed  CAS  Google Scholar 

  4. Dincer UD, Bidasee KR, Guner S, Tay A, Ozcelikay AT, Altan VM. The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes 2001;50:455-61.

    Article  PubMed  CAS  Google Scholar 

  5. Thackeray JT, Parsa-Nezhad M, Kenk M, Thorn SL, Kolajova M, Beanlands RS, et al. Reduced CGP12177 binding to cardiac beta-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl Med Biol 2011;38:1059-66.

    Article  PubMed  CAS  Google Scholar 

  6. Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, et al. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol 2011;10:75.

    Article  PubMed  CAS  Google Scholar 

  7. Li W, Knowlton D, Van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 2004;286:H2229-36.

    Article  PubMed  CAS  Google Scholar 

  8. Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol 2005;90:827-35.

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien IA, McFadden JP, Corrall RJ. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 1991;79:495-502.

    PubMed  Google Scholar 

  10. Tipre DN, Fox JJ, Holt DP, Green G, Yu J, Pomper M, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 2008;49:1189-95.

    Article  PubMed  Google Scholar 

  11. Thackeray JT, Renaud JM, Kordos M, Klein R, deKemp RA, Beanlands RS, et al. Test-retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol 2013;40:676-81.

    Article  PubMed  CAS  Google Scholar 

  12. Law MP, Schafers K, Kopka K, Wagner S, Schober O, Schafers M. Molecular imaging of cardiac sympathetic innervation by 11C-mHED and PET: From man to mouse? J Nucl Med 2010;51:1269-76.

    Article  PubMed  CAS  Google Scholar 

  13. Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: Implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48:603-8.

    Article  PubMed  CAS  Google Scholar 

  14. Kiyono Y, Iida Y, Kawashima H, Tamaki N, Nishimura H, Saji H. Regional alterations of myocardial norepinephrine transporter density in streptozotocin-induced diabetic rats: Implications for heterogeneous cardiac accumulation of MIBG in diabetes. Eur J Nucl Med 2001;28:894-9.

    Article  PubMed  CAS  Google Scholar 

  15. Kiyono Y, Iida Y, Kawashima H, Ogawa M, Tamaki N, Nishimura H, et al. Norepinephrine transporter density as a causative factor in alterations in MIBG myocardial uptake in NIDDM model rats. Eur J Nucl Med Mol Imaging 2002;29:999-1005.

    Article  PubMed  CAS  Google Scholar 

  16. Dubois EA, Somsen GA, van den Bos JC, Janssen AG, Batink HD, Boer GJ, et al. Development of radioligands for the imaging of cardiac beta-adrenoceptors using SPECT. Part II: Pharmacological characterization in vitro and in vivo of new 123I-labeled beta-adrenoceptor antagonists. Nucl Med Biol 1997;24:9-13.

    Article  PubMed  CAS  Google Scholar 

  17. Kusmic C, Morbelli S, Marini C, Matteucci M, Cappellini C, Pomposelli E, et al. Whole-body evaluation of MIBG tissue extraction in a mouse model of long-lasting type II diabetes and its relationship with norepinephrine transport protein concentration. J Nucl Med 2008;49:1701-6.

    Article  PubMed  Google Scholar 

  18. Muhr-Becker D, Weiss M, Tatsch K, Wolfram G, Standl E, Schnell O. Scintigraphically assessed cardiac sympathetic dysinnervation in poorly controlled type 1 diabetes mellitus: One-year follow-up with improved metabolic control. Exp Clin Endocrinol Diabetes 1999;107:306-12.

    Article  PubMed  CAS  Google Scholar 

  19. Stevens MJ, Raffel DM, Allman KC, Dayanikli F, Ficaro E, Sandford T, et al. Cardiac sympathetic dysinnervation in diabetes: Implications for enhanced cardiovascular risk. Circulation 1998;98:961-8.

    Article  PubMed  CAS  Google Scholar 

  20. Fricke E, Eckert S, Dongas A, Fricke H, Preuss R, Lindner O, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: Follow-up after 1 year with neurostimulation. J Nucl Med 2008;49:1458-64.

    Article  PubMed  CAS  Google Scholar 

  21. Gerson MC, Caldwell JH, Ananthasubramaniam K, Clements IP, Henzlova MJ, Amanullah A, et al. Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circ Cardiovasc Imaging 2011;4:87-93.

    Article  PubMed  Google Scholar 

  22. Takahashi N, Nakagawa M, Saikawa T, Ooie T, Yufu K, Shigematsu S, et al. Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. J Am Coll Cardiol 2001;38:232-7.

    Article  PubMed  CAS  Google Scholar 

  23. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, et al. Sympathetic dysfunction in type 1 diabetes: Association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 2004;44:2368-74.

    Article  PubMed  CAS  Google Scholar 

  24. Arikawa E, Ma RC, Isshiki K, Luptak I, He Z, Yasuda Y, et al. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta’s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. Diabetes 2007;56:1410-20.

    Article  PubMed  CAS  Google Scholar 

  25. Verma S, McNeill JH. Metformin improves cardiac function in isolated streptozotocin-diabetic rat hearts. Am J Physiol 1994;266:H714-9.

    PubMed  CAS  Google Scholar 

  26. Thackeray JT, Beanlands RS, Dasilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med 2007;48:1733-40.

    Article  PubMed  CAS  Google Scholar 

  27. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism 2000;49:1390-4.

    Article  PubMed  CAS  Google Scholar 

  28. Sreenan S, Sturis J, Pugh W, Burant CF, Polonsky KS. Prevention of hyperglycemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am J Physiol 1996;271:E742-7.

    PubMed  CAS  Google Scholar 

  29. Shoghi KI, Finck BN, Schechtman KB, Sharp T, Herrero P, Gropler RJ, et al. In vivo metabolic phenotyping of myocardial substrate metabolism in rodents: differential efficacy of metformin and rosiglitazone monotherapy. Circ Cardiovasc Imaging 2009;2:373-81.

    Article  PubMed  Google Scholar 

  30. Ganguly PK, Beamish RE, Dhalla KS, Innes IR, Dhalla NS. Norepinephrine storage, distribution, and release in diabetic cardiomyopathy. Am J Physiol 1987;252:E734-9.

    PubMed  CAS  Google Scholar 

  31. Marsh SA, Dell’italia LJ, Chatham JC. Interaction of diet and diabetes on cardiovascular function in rats. Am J Physiol Heart Circ Physiol 2009;296:H282-92.

    Article  PubMed  CAS  Google Scholar 

  32. Marsh SA, Powell PC, Agarwal A, Dell’Italia LJ, Chatham JC. Cardiovascular dysfunction in Zucker obese and Zucker diabetic fatty rats: role of hydronephrosis. Am J Physiol Heart Circ Physiol 2007;293:H292-8.

    Article  PubMed  CAS  Google Scholar 

  33. Fazan R Jr, Dias da Silva VJ, Ballejo G, Salgado HC. Power spectra of arterial pressure and heart rate in streptozotocin-induced diabetes in rats. J Hypertens 1999;17:489-95.

    Article  PubMed  Google Scholar 

  34. Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat. Clin Exp Pharmacol Physiol 2006;33:327-31.

    Article  PubMed  CAS  Google Scholar 

  35. Goncalves AC, Tank J, Diedrich A, Hilzendeger A, Plehm R, Bader M, et al. Diabetic hypertensive leptin receptor-deficient db/db mice develop cardioregulatory autonomic dysfunction. Hypertension 2009;53:387-92.

    Article  PubMed  Google Scholar 

  36. Connelly KA, Prior DL, Kelly DJ, Feneley MP, Krum H, Gilbert RE. Load-sensitive measures may overestimate global systolic function in the presence of left ventricular hypertrophy: A comparison with load-insensitive measures. Am J Physiol Heart Circ Physiol 2006;290:H1699-705.

    Article  PubMed  CAS  Google Scholar 

  37. Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S. Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest 1990;86:481-8.

    Article  PubMed  CAS  Google Scholar 

  38. Connelly KA, Kelly DJ, Zhang Y, Prior DL, Martin J, Cox AJ, et al. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc Res 2007;76:280-91.

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka K, Kawano T, Tsutsumi YM, Kinoshita M, Kakuta N, Hirose K, et al. Differential effects of propofol and isoflurane on glucose utilization and insulin secretion. Life Sci 2011;88:96-103.

    Article  PubMed  CAS  Google Scholar 

  40. Lenz C, Rebel A, van Ackern K, Kuschinsky W, Waschke KF. Local cerebral blood flow, local cerebral glucose utilization, and flow-metabolism coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 1998;89:1480-8.

    Article  PubMed  CAS  Google Scholar 

  41. Hattori Y, Azuma M, Gotoh Y, Kanno M. Negative inotropic effects of halothane, enflurane, and isoflurane in papillary muscles from diabetic rats. Anesth Analg 1987;66:23-8.

    Article  PubMed  CAS  Google Scholar 

  42. Graham M, Qureshi A, Noueihed R, Harrison S, Howarth FC. Effects of halothane, isoflurane, sevoflurane and desflurane on contraction of ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 2004;261:209-15.

    Article  PubMed  CAS  Google Scholar 

  43. Chareonthaitawee P, Sorajja P, Rajagopalan N, Miller TD, Hodge DO, Frye RL, et al. Prevalence and prognosis of left ventricular systolic dysfunction in asymptomatic diabetic patients without known coronary artery disease referred for stress single-photon emission computed tomography and assessment of left ventricular function. Am Heart J 2007;154:567-74.

    Article  PubMed  Google Scholar 

  44. Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: An assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism 1999;48:92-101.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the PET BioTesting, Imaging Physics, and Radiochemistry laboratories for their excellent technical expertise and assistance with these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Thackeray PhD.

Additional information

Financial Assistance

Experiments were funded by the Heart and Stroke Foundation of Ontario (NA7213, PRG6242). JTT was supported by a Heart and Stroke Foundation of Canada Doctoral Research Award. RSB is a Career Investigator of the Heart and Stroke Foundation of Canada, a Tier 1 University of Ottawa Chair in Cardiovascular Disease Research, and the Goldfarb Chair in Cardiac Imaging Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thackeray, J.T., deKemp, R.A., Beanlands, R.S. et al. Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J. Nucl. Cardiol. 20, 845–856 (2013). https://doi.org/10.1007/s12350-013-9759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-013-9759-2

Keywords

Navigation