Skip to main content

Advertisement

Log in

Non-FDG imaging of atherosclerosis: Will imaging of MMPs assess plaque vulnerability?

  • From Bench to Imaging
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Acute ruptures of atherosclerotic plaques with subsequent occlusion account for the vast majority of clinical events such as myocardial infarction or stroke. New imaging approaches focusing on the visualization of inflammation in the vessel wall could emerge as tools for individualized risk assessment and prevention of events. To this end, PET employing 18F-fluorodeoxyglucose (FDG) has recently been introduced for the first clinical trials. Although this approach nicely visualizes plaques inflammation questions remain with respect to if and how this inflammatory signal can be employed for predicting individual plaque rupture. Molecular imaging of proteases such as matrix-metalloproteinases (MMPs) involved in several steps in plaque progression driving plaques into vulnerable, rupture-prone states seems a promising alternative approach. This review introduces and discusses the vulnerable plaque concept, animal models with human-like plaque ruptures and the potential of a FDG versus a non-FDG MMP-targeted strategy to image rupture-prone plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115-26.

    Article  PubMed  CAS  Google Scholar 

  2. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-74.

    Article  PubMed  CAS  Google Scholar 

  3. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J 2003;2004:1077-82.

    Google Scholar 

  4. Yla-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 2011;106:1-19.

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz RG. Early insights of cardiac risk and treatment response with quantitative PET monitoring of coronary-specific endothelial dysfunction and myocardial perfusion reserve. J Nucl Cardiol 2010;17:985-9.

    Article  PubMed  Google Scholar 

  6. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation 1995;92:1355-74.

    PubMed  CAS  Google Scholar 

  7. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316-25.

    Article  PubMed  CAS  Google Scholar 

  8. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: A type of vulnerable plaque: The major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001;16:285-92.

    Article  PubMed  CAS  Google Scholar 

  9. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493-503.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468-71.

    Article  PubMed  CAS  Google Scholar 

  11. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 1994;93:1885-93.

    Article  PubMed  CAS  Google Scholar 

  12. Johnson J, Carson K, Williams H, Karanam S, Newby A, Angelini G, et al. Plaque rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse: Model characterization and effects of pravastatin treatment. Circulation 2005;111:1422-30.

    Article  PubMed  CAS  Google Scholar 

  13. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 2000;20:2587-92.

    Article  PubMed  CAS  Google Scholar 

  14. Williams H, Johnson JL, Carson KG, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2002;22:788-92.

    Article  PubMed  CAS  Google Scholar 

  15. Sasaki T, Kuzuya M, Nakamura K, Cheng XW, Shibata T, Sato K, et al. A simple method of plaque rupture induction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:1304-9.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang S, Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH, et al. Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation 2005;111:3457-64.

    Article  PubMed  CAS  Google Scholar 

  17. Ni M, Chen WQ, Zhang Y. Animal models and potential mechanisms of plaque destabilisation and disruption. Heart 2009;95:1393-8.

    Article  PubMed  CAS  Google Scholar 

  18. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: A new observation. Clin Nucl Med 2001;26:314-9.

    Article  PubMed  CAS  Google Scholar 

  19. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.

    Article  PubMed  CAS  Google Scholar 

  20. Davies JR, Rudd JH, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642-7.

    Article  PubMed  Google Scholar 

  21. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.

    Article  PubMed  Google Scholar 

  22. Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: A prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2009;2:107-15.

    Article  PubMed  Google Scholar 

  23. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892-6.

    Article  PubMed  Google Scholar 

  24. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.

    Article  PubMed  Google Scholar 

  25. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): A randomised clinical trial. Lancet 2011;378:1547-59.

    Article  PubMed  CAS  Google Scholar 

  26. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009;50:1611-20.

    Article  PubMed  Google Scholar 

  27. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol 2011;58:603-14.

    Article  PubMed  CAS  Google Scholar 

  28. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J 2011;278:28-45.

    Article  PubMed  CAS  Google Scholar 

  29. Wagner S, Breyholz HJ, Faust A, Holtke C, Levkau B, Schober O, et al. Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 2006;13:2819-38.

    Article  PubMed  CAS  Google Scholar 

  30. Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006;69:614-24.

    Article  PubMed  CAS  Google Scholar 

  31. Newby AC. Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr Opin Lipidol 2006;17:556-61.

    Article  PubMed  CAS  Google Scholar 

  32. Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost 2001;86:346-55.

    CAS  Google Scholar 

  33. Johnson JL, Baker AH, Oka K, Chan L, Newby AC, Jackson CL, et al. Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: Involvement of macrophage migration and apoptosis. Circulation 2006;113:2435-44.

    Article  PubMed  CAS  Google Scholar 

  34. Zheng QH, Fei X, DeGrado TR, Wang JQ, Stone KL, Martinez TD, et al. Synthesis, biodistribution and micro-PET imaging of a potential cancer biomarker carbon-11 labeled MMP inhibitor (2R)-2-[[4-(6-fluorohex-1-ynyl)phenyl]sulfonylamino]-3-methylbutyric acid [11C]methyl ester. Nucl Med Biol 2003;30:753-60.

    Article  PubMed  CAS  Google Scholar 

  35. Furumoto S, Takashima K, Kubota K, Ido T, Iwata R, Fukuda H. Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 2003;30:119-25.

    Article  PubMed  CAS  Google Scholar 

  36. Sahul ZH, Mukherjee R, Song J, McAteer J, Stroud RE, Dione DP, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: Relationship to myocardial dysfunction. Circ Cardiovasc Imaging 2011;4:381-91.

    Article  PubMed  Google Scholar 

  37. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005;112:3157-67.

    Article  PubMed  CAS  Google Scholar 

  38. Breyholz HJ, Wagner S, Faust A, Riemann B, Holtke C, Hermann S, et al. Radiofluorinated pyrimidine-2,4,6-triones as molecular probes for noninvasive MMP-targeted imaging. ChemMedChem 2010;5:777-89.

    Article  PubMed  CAS  Google Scholar 

  39. Faust A, Waschkau B, Waldeck J, Holtke C, Breyholz HJ, Wagner S, et al. Synthesis and evaluation of a novel hydroxamate based fluorescent photoprobe for imaging of matrix metalloproteinases. Bioconjug Chem 2009;20:904-12.

    Article  PubMed  CAS  Google Scholar 

  40. Wagner S, Breyholz HJ, Holtke C, Faust A, Schober O, Schäfers M, et al. A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: Radiosynthesis and initial small-animal PET studies. Appl Radiat Isot 2009;67:606-10.

    Article  PubMed  CAS  Google Scholar 

  41. Schäfers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schäfers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004;109:2554-9.

    Article  PubMed  Google Scholar 

  42. Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, et al. Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 2008;118:1953-60.

    Article  PubMed  CAS  Google Scholar 

  43. Hartung D, Schäfers M, Fujimoto S, Levkau B, Narula N, Kopka K, et al. Targeting of matrix metalloproteinase activation for noninvasive detection of vulnerable atherosclerotic lesions. Eur J Nucl Med Mol Imaging 2007;34:S1-8.

    Article  PubMed  CAS  Google Scholar 

  44. Fujimoto S, Hartung D, Ohshima S, Edwards DS, Zhou J, Yalamanchili P, et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: Resolution with dietary modification and statin therapy. J Am Coll Cardiol 2008;52:1847-57.

    Article  PubMed  CAS  Google Scholar 

  45. Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011;52:1795-802.

    Article  PubMed  CAS  Google Scholar 

  46. Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 2008;28:425-32.

    Article  PubMed  CAS  Google Scholar 

  47. Azhdarinia A, Wilganowski N, Robinson H, Ghosh P, Kwon S, Lazard ZW, et al. Characterization of chemical, radiochemical and optical properties of a dual-labeled MMP-9 targeting peptide. Bioorg Med Chem 2011;19:3769-76.

    Article  PubMed  CAS  Google Scholar 

  48. Wagner S, Faust A, Breyholz HJ, Schober O, Schäfers M, Kopka K. The MMP inhibitor (R)-2-(N-benzyl-4-(2-[18F]fluoroethoxy)phenylsulphonamido)-N-hydroxy-3-methylbutanamide: Improved precursor synthesis and fully automated radiosynthesis. Appl Radiat Isot 2011;69:862-8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Deutsche Forschungsgemeinschaft, Collaborative Research Center SFB 656 “Cardiovascular Molecular Imaging“, projects A2, C6 and Z2, Münster, Germany and a research grant from Siemens Medical Solution, Erlangen, Germany. The authors are thankful to Nina Gerigk for her excellent graphical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hermann MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, S., Starsichova, A., Waschkau, B. et al. Non-FDG imaging of atherosclerosis: Will imaging of MMPs assess plaque vulnerability?. J. Nucl. Cardiol. 19, 609–617 (2012). https://doi.org/10.1007/s12350-012-9553-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9553-6

Keywords

Navigation