We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Dual gated PET/CT imaging of small targets of the heart: Method description and testing with a dynamic heart phantom

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

In PET imaging respiratory and cardiac contraction motions interfere the imaging of heart. The aim was to develop and evaluate dual gating method for improving the detection of small targets of the heart.

Methods

The method utilizes two independent triggers which are sent periodically into list mode data based on respiratory and ECG cycles. An algorithm for generating dual gated segments from list mode data was developed.

Results

The test measurements showed that rotational and axial movements of point source can be separated spatially to different segments with well-defined borders. The effect of dual gating on detection of small moving targets was tested with a moving heart phantom. Dual gated images showed 51% elimination (3.6 mm out of 7.0 mm) of contraction motion of hot spot (diameter 3 mm) and 70% elimination (14 mm out of 20 mm) of respiratory motion. Averaged activity value of hot spot increases by 89% when comparing to non-gated images. Patient study of suspected cardiac sarcoidosis shows sharper spatial myocardial uptake profile and improved detection of small myocardial structures such as papillary muscles.

Conclusions

The dual gating method improves detection of small moving targets in a phantom and it is feasible in clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Qiao H, Zhang H, Zheng Y, Ponde DE, Shen D, Gao F, et al. Embryonic stem cell grafting in normal and infarcted myocardium. Radiology 2009;250:821-9.

    Article  PubMed  Google Scholar 

  2. Dunphy MPS, Freiman A, Larson SM, Strauss HW. Assosiation of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278-84.

    PubMed  Google Scholar 

  3. Alexanderson E, Slomka P, Cheng V, Meave A, Saldana Y, Garcia-Rojas L, et al. Fusion of positron emission tomography and coronary computed tomographic angiography identifies fluorine 18 fluorodeoxyglucose uptake in the left main coronary artery soft plaque. J. Nucl. Cardiol 2008;15:841-3.

    PubMed  Google Scholar 

  4. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.

    Article  PubMed  Google Scholar 

  5. Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 2008;5:S2-10.

    Article  PubMed  Google Scholar 

  6. Livieratos L, Rajappan K, Stegger L, Schafers K, Bailey DL, Camici PG. Respiratory gating of cardiac PET data in listmode acquisition. Eur J Nucl Med Mol Imaging 2006;33:584-8.

    Article  PubMed  Google Scholar 

  7. Martinez-Möller A, Zikic D, Botnar RM, Bundschuh RA, Howe W, Ziegler SI, et al. Dual cardiac-respiratory gated PET: Implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging 2007;34:1447-54.

    Article  PubMed  Google Scholar 

  8. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33:713-9.

    Article  CAS  PubMed  Google Scholar 

  9. Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: Lessons from real-time MR imaging. Am J Roentgenol 1999;172:1061-5.

    CAS  Google Scholar 

  10. Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 2004;45:1128-34.

    PubMed  Google Scholar 

  11. Wang Y, Vidan E, Bergman GW. Cardiac motion of coronary arteries: Variability in the rest period and implications for coronary MR angiography. Radiology 1999;213:751-8.

    CAS  PubMed  Google Scholar 

  12. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876-81.

    PubMed  Google Scholar 

  13. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179-86.

    Article  CAS  PubMed  Google Scholar 

  14. Klein GJ, Reutter BW, Huesman RH. Non-rigid summing of gated PET via optical flow. IEEE Trans Nucl Sci 1997;44:1509-12.

    Article  Google Scholar 

  15. Klein GJ, Reutter BW, Ho MH, Reed JH, Huesman RH. Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans Nucl Sci 1998;45:2139-43.

    Article  Google Scholar 

  16. Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: Methodology and comparison with respiratory gated PET. J Nucl Med 2003;44:1644-8.

    PubMed  Google Scholar 

  17. Nehmeh SA, Erdi YE, Pan T, Yorke E, Mageras GS, Rosenzweig KE, et al. Quantitation of respiratory motion during 4D-PET/CT acquisition. Med Phys 2004;31:1333-8.

    Article  CAS  PubMed  Google Scholar 

  18. N. Durand-Schaefer. Development of a new imaging technique in positron emission tomography: The dual gating. Master thesis in Kungliga Tekniska Högskolan, Stockholm, Sweden; 2008

  19. Schäfers KP, Dawood M, Lang N, Büther F, Schäfers M, Schober O. Motion correction in PET/CT. Nuklearmedizin 2005;44:46-50.

    Google Scholar 

  20. Martinez-Möller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: Frequency, effects and potential solutions. J Nucl Med 2007;2:188-93.

    Google Scholar 

  21. Pan T, Lee TY, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004;31:334-40.

    Article  Google Scholar 

  22. Sipilä H, Teräs M, Kokki T, Knuuti J. A moving heart phantom for dual gated PET/CT studies. In: Nuclear science symposium conference record, 2007, NSS ’07. IEEE, vol 5, p. 3322-3

  23. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectivenes of prolonged fasting 18F-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 2009;16:801-10.

    Article  PubMed  Google Scholar 

  24. Park S-J, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, et al. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 2008;53:3661-79.

    Article  PubMed  Google Scholar 

  25. Dawood M, Lang N, Jiang X, Schäfers KP. Lung motion correction on respiratory gated 3-D PET/CT images. IEEE Trans Med Imaging 2006;25:476-85.

    Article  PubMed  Google Scholar 

  26. De Bondt P, Nichols K, Vandenberghe S, Segers P, De Winter O, Van de Wiele C, et al. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom. J Nucl Med 2003;44:967-72.

    PubMed  Google Scholar 

  27. De Bondt P, Claessens T, Rys B, De Winter O, Vandenberghe S, Segers P, et al. Accuracy of 4 different algorithms for analysis of tomographic radionuclide ventriculography using a physical, dynamic 4-chamber cardiac phantom. J Nucl Med 2005;46:165-71.

    PubMed  Google Scholar 

  28. Visser JJN, Busemann Sokole E, Verberne HJ, Habraken JBA, van de Stadt HJF, Jaspers JEN, et al. A realistic 3-D gated cardiac phantom for quality control of gated myocardium perfusion SPET: The Amsterdam gated (AGATE) cardiac phantom. Eur J Nucl Med Mol Imaging 2004;31:222-8.

    PubMed  Google Scholar 

  29. Teräs M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J. Performance of the new generation of whole body PET/CT scanners: Discovery STE and Discovery VCT. Eur J Nucl Med Mol Imaging 2007;34:1683-92.

    Article  PubMed  Google Scholar 

  30. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932-45.

    Article  PubMed  Google Scholar 

  31. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR 2007;190:W151-6.

    Article  Google Scholar 

  32. O’Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Cury RC, et al. Cardiac tumors: Optimal cardiac MR sequences and spectrum of imaging appearances. AJR 2009;193:377-87.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Technical support for the phantom engineering was given by Mr. Tom Wikström.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Kokki M.Sc..

Additional information

The study was conducted within the “Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research” supported by the Academy of Finland, University of Turku, Turku University Hospital and Abo Academy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokki, T., Sipilä, H.T., Teräs, M. et al. Dual gated PET/CT imaging of small targets of the heart: Method description and testing with a dynamic heart phantom. J. Nucl. Cardiol. 17, 71–84 (2010). https://doi.org/10.1007/s12350-009-9163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-009-9163-0

Keywords

Navigation