Advertisement

The intestinal permeability syndrome, celiac disease, gluten sensitivity, autistic spectrum, mycotoxins and immunological tolerance

  • M. Proietti
  • A. Del Buono
  • G. Pagliaro
  • R. Del Buono
  • C. Di Rienzo
Review

Abstract

The onset of several human diseases takes place in an inefficient intestine. We probably should re-evaluate the relationship between food and health. Three million Italians and twenty million Americans suffer from the gluten sensitivity syndrome, similar yet different from celiac disease. Different pathological status arise as a consequence of sensitivity to gluten, depending on the genetic polymorphism of the subjects and the environment in which they live. If we gain more knowledge on interactions between food, eating habits, genomics and the environment, this could mean better prevention and/or treatment. The era of epigenetics has begun, while the dogma of genetic determinism seems to be fading.

Keywords

Mycotoxins Immunological tolerance Intestinal permeability syndrome Celiac disease Gluten sensitivity Autistic spectrum 

Notes

Conflict of interest

None.

References

  1. 1.
    Mishkin S (1997) Dairy sensitivity, lactose malabsorbtion, and elimination diets in inflammatory bowel disease. Am J Clin Nutr 65(2):564–567Google Scholar
  2. 2.
    Saavedra-Delagado AM, Metcalfe DD (1985) Interactions between food antigens and the immune system in the pathogenesis of gastrointestinal diseases. Ann Allergy 55:694–700Google Scholar
  3. 3.
    Manahan B, Ther A (2004) A brief evidence-based review of two gastrointestinal illnesses: irritable bowel and leaky gut syndrome. Health Med 10(4):14Google Scholar
  4. 4.
    Delcenserie V, Martel D, Lamoureux M, Amiot J, Buotin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10:37–54Google Scholar
  5. 5.
    Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G (1997) Prostaglandin E2 primes naive T cells for the production of antiinflammatory cytokines. Eur J Immunol 27:3526–3531CrossRefGoogle Scholar
  6. 6.
    Miniello VL, Granieri L, Tarantino M, Amenio L (2001) Alimenti funzionali: i prebiotici. Riv It Ped 27:323–327Google Scholar
  7. 7.
    Cirillo T, Ritieni A, Galvano F, Amodio Cocchieri R (2003) Natural co-occurrence of deoxynivalenol and fumonisins B1 and B2 in Italian marketed foodstuffs. Food Addit Contam 20(6):566–571CrossRefGoogle Scholar
  8. 8.
    Oswald I (2010) Head of immunotoxicology DON. INRA Laboratory of Pharmacology and Toxicology, ParisGoogle Scholar
  9. 9.
    Gardner MLG (1983) Evidence for, and implications of, passage of intact peptides across the intestinal mucosa. Biochem Soc Trans 11(6):810–813Google Scholar
  10. 10.
    Walker WA (1987) Pathophysiology of intestinal uptake and absorption of antigens in food allergy. Ann Allergy 59(II):7–16Google Scholar
  11. 11.
    Liu Z, Li N, Neu J (2005) Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr 94(4):386–393CrossRefGoogle Scholar
  12. 12.
    Rosenfeldt V, Benfeldt E, Valerius NH, Paerregaard A, Michaelsen KF (2004) Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr 145(5):612–616CrossRefGoogle Scholar
  13. 13.
    Catalioto RM, Maggi CA, Giuliani S (2011) Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr Med Chem 18(3):398–426CrossRefGoogle Scholar
  14. 14.
    Kiefer D, Ali-Akbarian L (2004) A brief evidence-based review of two gastrointestinal illnesses: irritable bowel and leaky gut syndromes. Altern Ther Health Med 10(3):22–30Google Scholar
  15. 15.
    Groschwitz KR, Hohan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Cl Imm 124:3–20 (quiz 21–22)CrossRefGoogle Scholar
  16. 16.
    Deer B (2009) MMR doctor Andrew Wakefield fixed data on autism. Sunday Times. RetrievedGoogle Scholar
  17. 17.
    Johnson TW (2006) Dietary considerations in autism: identifying a reasonable approach. Top Clin Nutr 21(3):212–225Google Scholar
  18. 18.
    MacDonald TT, Domizio P (2007) Autistic enterocolitis; is it a histopathological entity? Histopathology 50(3):371–379CrossRefGoogle Scholar
  19. 19.
    Montinari M (2002) Gut and Psycology Syndrome. Natasha Campbell McBrideGoogle Scholar
  20. 20.
    Pizzorno JE, Murray MT (2005) Textbook of natural medicine, 3rd edn. Churchill Livingstone, pp 167, 584, 1527Google Scholar
  21. 21.
    Sydney M, Finegold I (2011) Desulfovibrio species are potentially important in regressive autism. Med Hyp 77(2):270–274CrossRefGoogle Scholar
  22. 22.
    Witkin SS, Kalo-Klein A, Galland L, Teich M, Ledger WJ (1991) Effect of Candida albicans plus histamine on prostaglandin E2 production by peripheral blood mononuclear cells from healthy women and women with recurrent candidal vaginitis. J Infect Dis 164(2):396–399CrossRefGoogle Scholar
  23. 23.
    Fasano A, Shea-Donohue T (2005) Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2(9):416–422CrossRefGoogle Scholar
  24. 24.
    Pollard TD, Earnshaw WC (2008) Biologia Cellulare. Elsevier Italia srl, MilanoGoogle Scholar
  25. 25.
    Pagliaro G, Battino M (2010) The use of probiotics in gastrointestinal diseases. Med J Nutr Metab 3(2):105–113Google Scholar
  26. 26.
    Casas IA, Dobrogosz WJ (2000) Validation of the probiotic concept: Lact. R. Confers broad-spectrum protection against disease in human and animals. Microb Ecol Health Dis 12:247–285Google Scholar
  27. 27.
    Liu Y, Fatheree NY (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gast Liver Physiol 299(5):G1087–G1096CrossRefGoogle Scholar
  28. 28.
    Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE 2(12):e1308CrossRefGoogle Scholar
  29. 29.
    Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2012) Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine. Am J Physiol Gast Liver Physiol 302(6):G608–G617CrossRefGoogle Scholar
  30. 30.
    Auricchio S, Greco L, Troncone R (1988) Gluten-sensitive enteropathy in childhood. Pediatr Clin North Am 35:157–187Google Scholar
  31. 31.
    Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB et al (2003) Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 163:286–292CrossRefGoogle Scholar
  32. 32.
    George EK, Mearin ML, van der Velde EA, Houwen RH, Bouquet J et al (1995) Low incidence of childhood celiac disease in The Netherlands. Pediatr Res 37:213–218CrossRefGoogle Scholar
  33. 33.
    Greco L, Romino R, Coto I, di Cosmo N, Percopo S et al (2002) The first large population based twin study of celiac disease. Gut 50:624–628CrossRefGoogle Scholar
  34. 34.
    Green PH, Jabri B (2003) Coeliac disease. Lancet 362:383–391CrossRefGoogle Scholar
  35. 35.
    Maki M, Mustalahti K, Kokkonen J, Kulmala P, Haapalahti M et al (2003) Prevalence of celiac disease among children in Finland. N Engl J Med 348:2517–2524CrossRefGoogle Scholar
  36. 36.
    Tommasini A, Not T, Kiren V (2004) Mass screening for coeliac disease using anti-human transglutaminase antibody assay. Arch Dis Child 89:512–515CrossRefGoogle Scholar
  37. 37.
    Volta U, De Giorgio R (2012) New understanding of gluten sensitivity. Nat Rev Gastroenterol Hepatol 9(5):295–299. doi: 10.1038/nrgastro.2012.15 CrossRefGoogle Scholar
  38. 38.
    Korponay-Szabó IR, Simon-Vecsei Z, De Leo L, Not T (2012) Gluten-dependent intestinal autoimmune response. Curr Pharm Des 18(35):5753–5758Google Scholar
  39. 39.
    Mazzarella G, Maglio M, Paparo F, Nardone G, Stefanile R, Greco L, Van De Wal Y, Kooy Y, Koning F, Auricchio S, Troncone R (2003) An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLADQ8 positive but not HLA-DQ8 negative coeliac patients. Gut 52:57–62CrossRefGoogle Scholar
  40. 40.
    Van De Wal Y, Kooy Y, Van Veelen P, Vader W, Koning F, Peña S (2000) Coeliac disease: it takes three to tango! Gut 46(5):734–737CrossRefGoogle Scholar
  41. 41.
    Hausch F, Shan L, Santiago NA, Gray GM, Khosla C (2002) Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol 283:G996–G1003Google Scholar
  42. 42.
    Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P (1995) Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 37(6):766–776CrossRefGoogle Scholar
  43. 43.
    Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279CrossRefGoogle Scholar
  44. 44.
    Evans KE, Aziz I, Cross SS, Sahota GR, Hopper AD, Hadjivassiliou M, Sanders DS (2011) A prospective study of duodenal bulb biopsy in newly diagnosed and established adult celiac disease. Am J Gastroenterol 106(10):1837–1842. doi: 10.1038/ajg.2011.171 CrossRefGoogle Scholar
  45. 45.
    Doğan Y, Yldrmaz S, Ozercan IH (2012) Prevalence of celiac disease among first degree relatives of celiac disease patients. J Pediatr Gastroenterol Nutr 55(2):205–208. doi: 10.1097/MPG.0b013e318249378c Google Scholar
  46. 46.
    Marietta EV, Murray JA (2012) Animal models to study gluten sensitivity. Semin Immunopathol 34(4):497–511. doi: 10.1007/s00281-012-0315-y Google Scholar
  47. 47.
    Reilly NR, Green PH (2012) Epidemiology and clinical presentations of celiac disease. Semin Immunopathol 34(4):473–478. doi: 10.1007/s00281-012-0311-2 Google Scholar
  48. 48.
    Di Sabatino A, Corazza GR (2012) Nonceliac gluten sensitivity: sense or sensibility? Ann Intern Med 156(4):309–311CrossRefGoogle Scholar
  49. 49.
    Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 7(10):13CrossRefGoogle Scholar
  50. 50.
    Christison GW, Ivany K (2006) Elimination diets in autism spectrum disorders: any wheat amidst the chaff? J Dev Behav Pediatr 27(2 Suppl 2):S162–S171CrossRefGoogle Scholar
  51. 51.
    Nkongolo KK, Haley SD, Kim NS, Michael P, Fedak G, Quick JS, Peairs FB (2009) Molecular cytogenetic and agronomic characterization of advanced generations of wheat × triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers. Genome 52(4):353–360CrossRefGoogle Scholar
  52. 52.
    Cass H, Gringras P, March J (2008) Absence of urinary opioid peptides in children with autism. Arch Dis Child 93(9):745–750Google Scholar
  53. 53.
    Christison GW, Ivany K (2006) Elimination diets in autism spectrum disorders: any wheat amidst the chaff? J Dev Behav Pediatr 27(2):S162–S171CrossRefGoogle Scholar
  54. 54.
    Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336(6086):1314–1317CrossRefGoogle Scholar
  55. 55.
    UE (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffsGoogle Scholar
  56. 56.
    Bracarense AP, Lucioli J, Grenier B, Drociunas Pacheco G, Moll WD, Schatzmayr G, Oswald IP (2012) Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr 107(12):1776–1786CrossRefGoogle Scholar
  57. 57.
    Pinton P, Braicu C, Nougayrede JP, Laffitte J, Taranu I, Oswald IP (2010) Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. J Nutr 140(11):1956–1962CrossRefGoogle Scholar
  58. 58.
    Vandenbroucke V, Croubels S, Martel A, Verbrugghe E, Goossens J, Van Deun K, Boyen F, Thompson A, Shearer N, De Backer P, Haesebrouck F, Pasmans F (2011) The mycotoxin deoxynivalenol potentiates intestinal inflammation by Salmonella typhimurium in porcine ileal loops. PLoS ONE 6(8):e23871CrossRefGoogle Scholar
  59. 59.
    Reichelt KL, Saelid G, Lindback T, Bøler JB (1986) Childhood autism: a complex disorder. Biol Psychiatry 21(13):1279–1290CrossRefGoogle Scholar
  60. 60.
    Souza NC, Mendonca JN, Portari GV, Jordao Junior AA, Marchini JS, Chiarello PG (2012) Intestinal permeability and nutritional status in developmental disorders. Altern Ther Health Med 18(2):19–24Google Scholar
  61. 61.
    Millward C, Ferriter M, Calver S, Connell-Jones G (2008) Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst Rev 16(2):CD003498Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • M. Proietti
    • 1
  • A. Del Buono
    • 2
  • G. Pagliaro
    • 3
  • R. Del Buono
    • 4
  • C. Di Rienzo
    • 1
  1. 1.Italian Association of Toxic Elements StudysRomeItaly
  2. 2.Academy of Micronutrition “L. Pauling”CasertaItaly
  3. 3.Department of Biochemistry, Biology and Genetics, School of MedicineUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Università Campus Bio-MedicoRomeItaly

Personalised recommendations