Skip to main content

Advertisement

Log in

Role of lentils (Lens culinaris L.) in human health and nutrition: a review

  • Review
  • Published:
Mediterranean Journal of Nutrition and Metabolism

Abstract

Humans have known lentils (Lens culinaris L.) since the dawn of civilization. The current work is a comprehensive review of lentils composition, nutritional value, and health benefits. The article addresses major proteins identified in lentils and their bioactive peptides, including lectins, defensins, and protease inhibitors. In addition, this review discusses the complex carbohydrate fractions in lentils, particularly the resistant starches, oligosaccharides, and dietary fibers with emphasis on their biomedical properties. Also, the current review discusses minerals and vitamins as well as the non-nutritive bioactive phytochemicals of lentils which add to the promising potential for clinical applications in the management and prophylaxis of several chronic human illnesses. The article finds out that various potential health benefits have been described for lentils such as anticarcinogenic, blood pressure-lowering, hypocholesterolemic and glycemic load-lowering effects. The proposed mechanisms behind each health benefit are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tharanathan RN, Mahadevamma S (2003) Grain legumes—A boon to human nutrition. Trends Food Sci Technol 14:507–518

    Article  CAS  Google Scholar 

  2. Duranti M (2006) Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82

    Article  CAS  Google Scholar 

  3. Campos-Vega R, Loarca-Pina G, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482

    Article  CAS  Google Scholar 

  4. Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: pea, chickpea, and lentil. Food Res Int 43:432–442

    Article  CAS  Google Scholar 

  5. Rochfort S, Panozzo J (2007) Phytochemicals for health, the role of pulses. J Agric Food Chem 55:7981–7994

    Article  CAS  Google Scholar 

  6. Dilis V, Trichopoulou A (2009) Nutritional and health properties of pulses. Mediterr J Nutr Metab 1:149–157

    Article  Google Scholar 

  7. Food and Agriculture Organization (FAO) (1988) Traditional food plants, Food and Nutrition Paper, FAO, pp 150–154

  8. FAOSTAT. Food and Agricultural Organization of United Nations: Economic and Social Department: The Statistical Division. Retrievable from http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed October 2011)

  9. Satya S, Kaushik G, Naik SN (2010) Processing of food legumes: a boon to human nutrition. Mediterr J Nutr Metab 3:183–195

    Article  Google Scholar 

  10. Jood S, Bishnoi S, Sharma A (1998) Chemical analysis and physicochemical properties of chickpea and lentil cultivars. Nahrung/Food 42:71–74

    Article  CAS  Google Scholar 

  11. Solanki IS, Kapoor AC, Singh U (1999) Nutritional parameters and yield evaluation of newly developed genotypes of lentil (Lens culinaris Medik.). Plant Foods Hum Nutr 54:79–87

    Article  CAS  Google Scholar 

  12. United States Department of Agriculture (USDA) (2011) USDA National Nutrient Database for Standard Reference, Release 23. Retrievable from http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=243584 (accessed Jan 2011)

  13. Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413

    Article  CAS  Google Scholar 

  14. El-Adawy TA, Rahma EH, El-Bedawey AA, El-Beltagy AE (2003) Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum Nutr 58:1–13

    Article  Google Scholar 

  15. Bamdad F, Goli AH, Kadivar M (2006) Preparation and characterization of proteinous edible film from lentil (Lens culinaris). Food Res Int 39:106–111

    Article  CAS  Google Scholar 

  16. Padovani RM, Lima DM, Colugnati FAB, Rodriguez-Amaya DLB (2007) Comparison of proximate, mineral and vitamin composition of common Brazilian and US food. J Food Comp Anal 20:733–738

    Article  CAS  Google Scholar 

  17. Bednar GE, Patil AR, Murray SM, Grieshop CM, Merchen NR, Fahey GCJ (2001) Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J Nutr 131:276–286

    CAS  Google Scholar 

  18. Vidal-Valverde C, Frias J, Sierra I, Blazquez IF, Lambein F, Kuo YH (2002) New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol 215:472–477

    Article  CAS  Google Scholar 

  19. Han IH (2005) Oligosaccharide reduction, protein digestibility improvement, antioxidant activity determination and phenolic compounds identification in legumes. PhD Thesis, Washington State University

  20. Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM (2007) Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 62:85–91

    Article  CAS  Google Scholar 

  21. Demirbas A (2005) β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 90:773–777

    Article  CAS  Google Scholar 

  22. Umeta M, West CE, Fufa H (2005) Content of Zn, Fe, Ca and their absorption inhibitors in foods commonly consumed in Ethiopia. J Food Comp Anal 18:803–817

    Article  CAS  Google Scholar 

  23. Thavarajah D, Thavarajah P, Sarker A, Materne M, Vandemark G, Shrestha R, Idrissi O, Hacikamiloglu O, Bucak B, Vandenberg A (2011) A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chem 125:72–76

    Article  CAS  Google Scholar 

  24. Thavarajah D, Ruszkowski Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agric Food Chem 56:10747–10753

    Article  CAS  Google Scholar 

  25. Ryland D, Vaisey-Genser M, Arntfield SD, Malcolmson LJ (2010) Development of a nutritious acceptable snack bar using micronized flaked lentils. Food Res Int 43:642–649

    Article  CAS  Google Scholar 

  26. Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Comp Anal 19:405–419

    Article  CAS  Google Scholar 

  27. Xu BJ, Chang SKC (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 0:S1–S8

    Google Scholar 

  28. Zia-ur-Rehman Salariya AM (2005) The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumes. Int J Food Sci Technol 40:695–700

    Article  CAS  Google Scholar 

  29. Oomah BD, Caspar F, Malcolmson LJ, Bellido AS (2011) Phenolics and antioxidant activity of lentil and pea hulls. Food Res Int 44:436–441

    Article  CAS  Google Scholar 

  30. Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 121:682–690

    Article  CAS  Google Scholar 

  31. Amarowicz R, Estrella I, Hernandez T, Robredo S, Troszynska A, Kosinska A, Pegg RB (2010) Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem 121:705–711

    Article  CAS  Google Scholar 

  32. Amarowicz R, Estrella I, Hernández T, Duenas M, Troszyńska A, Kosińska A, Pegg RB (2009) Antioxidant activity of a red lentil extract and its fractions. Int J Mol Sci 10:5513–5527

    Article  CAS  Google Scholar 

  33. Duenas M, Sun B, Hernandiz T, Estrella I, Spranger MI (2003) Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J Agric Food Chem 51:7999–8004

    Article  CAS  Google Scholar 

  34. Duenas M, Hernandez T, Estrella I (2002) Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur Food Res Tech 215:478–483

    Article  CAS  Google Scholar 

  35. United States Department of Agriculture (USDA) (2006) Database for the Flavonoid Content of Selected Foods Release 2.1. Retrieved from http://www.nal.usda.gov/fnic/foodcomp/Data/Flav/flav.pdf (accessed Jan 2011)

  36. Duenas M, Hernandez T, Estrella I (2006) Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem 98:95–103

    Article  CAS  Google Scholar 

  37. Xu BJ, Yuan SH, Chang SKC (2007) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72:S167–S177

    Article  CAS  Google Scholar 

  38. Xu B, Chang SKC (2011) Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J Agric Food Chem 58:1509–1517

    Article  CAS  Google Scholar 

  39. Graf E, Eaton JW (1990) Antioxidant functions of phytic acid. Free Radic Biol Med 8:61–69

    Article  CAS  Google Scholar 

  40. Morris ER, Hill AD (1996) Inositol phosphate content of selected dry beans, peas, and lentils, raw and cooked. J Food Comp Anal 9:2–12

    Article  CAS  Google Scholar 

  41. Ayet G, Burbano C, Cuadrado C, Pedrosa MM, Robredo LM, Muzquiz M, de la Cuadra C, Castaño A, Osagie A (1997) Effect of germination, under different environment conditions, on saponins, phytic acid and tannins in lentils (Lens culinaris). J Sci Food Agric 74:273–279

    Article  CAS  Google Scholar 

  42. Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258

    Article  CAS  Google Scholar 

  43. Mejia EGL, Prisecaru VI (2005) Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 45:425–445

    Article  CAS  Google Scholar 

  44. Freier TC, Rudiger HEF (1990) Lectin-binding proteins from lentil seeds as mitogens for murine B-lymphocytes. Phytochemistry 29:1459–1461

    Article  CAS  Google Scholar 

  45. Finkina KI, Shramova EI, Tagaev AA, Ovchinnikova TV (2008) A novel defensin from the lentil (Lens culinaris) seeds. Biochem Biophys Res Commun 371:860–865

    Article  CAS  Google Scholar 

  46. Guillamon E, Pedrosa MM, Burbano C, Cuadrado C, Sanchez MC, Muzquiz M (2008) The trypsin inhibitors present in seed of different grain legume species and cultivars. Food Chem 107:68–74

    Article  CAS  Google Scholar 

  47. Cheung AHK, Ng TB (2007) Isolation and characterization of a trypsin–chymotrypsin inhibitor from the seeds of green lentil (Lens culinaris). Protein Pep Lett 14:859–864

    Article  CAS  Google Scholar 

  48. Scarafoni A, Magni C, Duranti M (2007) Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci Technol 18:454–463

    Article  CAS  Google Scholar 

  49. Lajolo FM, Genovese M (2002) Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem 50:6592–6598

    Article  CAS  Google Scholar 

  50. Costa GEA, Queiroz-Monici KS, Reis SMP, Oliveira MAC (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–330

    Article  CAS  Google Scholar 

  51. Stephen AM, Dahl WJ, Sieber GM, Blaricom JA, Morgan DR (1995) Effect of green lentils on colonic function, nitrogen balance, and serum lipids in healthy human subjects. Am J Clin Nutr 62:1–7

    Google Scholar 

  52. Perera A, Meda V, Tyler RT (2010) Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res Int 43:1959–1974

    Article  CAS  Google Scholar 

  53. Garcia-Alonso A, Goni I, Saura-Calixto F (1998) Resistant starch and potential glycaemic index of raw and cooked legumes (lentils, chickpeas and beans). Z Lebensm Unters Forsch A 206:284–287

    Article  CAS  Google Scholar 

  54. Queiroz-Monici KS, Costa GEA, Silva N, Reis SM, Oliveira AC (2005) Bifidogenic effect of dietary fibre and resistant starch from leguminous on the intestinal microbiota of rats. Nutr 21:602–608

    Article  CAS  Google Scholar 

  55. Hernandez-Salazar M, Osorio-Diaz P, Loarca-Pina G, Reynoso-Camacho R, Tovar J, Bello-Pérez LA (2010) In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). J Sci Food Agric 90:1417–1422

    Article  CAS  Google Scholar 

  56. Pellegrini N, Serafini M, Salvatore S, Rio DD, Bianchi M, Brighenti F (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 50:1030–1038

    Article  CAS  Google Scholar 

  57. Xu BJ, Chang SKC (2008) Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem 110:1–13

    Article  CAS  Google Scholar 

  58. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release2.Retreivablefrom http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/ORAC/ORAC_R2.pdf. (accessed October 2010)

  59. Lardos A (2006) The botanical materia medica of the Iatrosophikon-A collection of prescriptions from a monastery in Cyprus. J Ethnopharmacol 104:387–406

    Article  Google Scholar 

  60. Giday M, Teklehaymanot T, Animut A, Mekonnen Y (2007) Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in Northwest Ethiopia. J Ethnopharmacol 110:516–525

    Article  Google Scholar 

  61. Teklehaymanot T, Giday M, Medhin G, Mekonnen Y (2007) Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia. J Ethnopharmacol 111:271–283

    Article  Google Scholar 

  62. Sezik E, Yesilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T (2001) Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J Ethnopharmacol 75:95–115

    Article  CAS  Google Scholar 

  63. Alexandre KB, Gray ES, Lambson BE, Moore PL, Choge IA, Mlisana K, Abdool Karim SS, McMahon J, OKeefe Chikwamba R, Morris L, Chikwamba R, Morris L (2010) Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins– Griffithsin– Cyanovirin-N and Scytovirin. Virology 402:187–196

    Article  CAS  Google Scholar 

  64. Kingman SM, Walker AF, Low AG, Sambrook IE (1993) Comparative effect of four legume species on plasma lipids and fecal steroid excretion in hypocholesterolaemic pigs. Br J Nutr 69:409–421

    Article  CAS  Google Scholar 

  65. Flight I, Clifton P (2006) Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. Eur J Clin Nutr 60:1145–1159

    Article  CAS  Google Scholar 

  66. Anderson JW, Major AW (2002) Pulses and lipemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr 88:S263–S271

    Article  CAS  Google Scholar 

  67. Boye JI, Roufik S, Pesta N, Barbana C (2010) Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci Technol 43:987–991

    Article  CAS  Google Scholar 

  68. Tucker KL, Selhub J, Wilson PWF, Rosenberg IH (1996) Dietary intake pattern relates to plasma folate and homocysteine concentrations in the Framingham heart study. J Nutr 126:3025–3031

    CAS  Google Scholar 

  69. Pinto X, Vilaseca MA, Balcells S, Artuch R, Corbella E, Meco JF, Vila R, Pujol R, Grinberg D (2005) Folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations. Int J Med Sci 2:58–63

    Article  CAS  Google Scholar 

  70. Al-Tibi AMH, Takruri HR, Ahmad MN (2010) Effect of dehulling and cooking of lentils (Lens culinaris L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays J Nutr 16:83–92

    Google Scholar 

  71. Eidi A, Eidi M (2009) Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes Metabol Synd: Clin Res Rev 3:40–44

    Article  Google Scholar 

  72. Martins JM, Riottot M, de Abreu MC, Lança MJ, Viegas-Crespo AM, Almeida JA, Freire JB, Bento OP (2004) Dietary raw peas (Pisum sativum L.) reduce plasma total and LDL cholesterol and hepatic esterified cholesterol in intact and ileorectal anastomosed pigs fed cholesterol-rich diets. J Nutr 134:3305–3312

    CAS  Google Scholar 

  73. Shams H, Tahbaz F, Entezari M, Abadi A (2008) Effects of cooked lentils on glycaemic control and blood lipids of patients with type 2 diabetes. ARYA Athero J 3:215–218

    Google Scholar 

  74. Jenkins DJA, Wong GS, Patten R, Bird J, Hall M, Buckley GC, McGuire V, Reichert R, Little JA (1983) Leguminous seeds in the dietary management of hyperlipidemia. Am J Clin Nutr 38:567–573

    CAS  Google Scholar 

  75. Dabai FD, Walker AF, Sambrook IE, Welch VA, Owen RW, Abeyasekera S (1996) Comparative effects on blood lipids and fecal steroids of five legume species incorporated into a semi-purified, hypercholesterolaemic rat diet. Br J Nutr 75:557–571

    Article  CAS  Google Scholar 

  76. Duane WC (1997) Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J Lipid Res 38:1120–1128

    CAS  Google Scholar 

  77. Kingman SM (1991) The influence of legume seeds on human plasma lipid concentrations. Nutr Res Rev 4:97–123

    Article  CAS  Google Scholar 

  78. Bazzano LA, Thompson, Tees MT, Nguyen CH, Winham DM (2009) Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 21:94–103

  79. Rizkalla SW, Bellisle F, Slama G (2002) Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br J Nutr 88:S255–S262

    Article  CAS  Google Scholar 

  80. Venn BJ, Mann JI (2004) Cereal grains, legumes and diabetes. Eur J Clin Nutr 58:1443–1461

    Article  CAS  Google Scholar 

  81. Calle-Pascual AL, Marenco G, Asis MJ, Bordiu E, Romeo S, Martin PJ, Maranes JP, Charro AL (1986) Effects of different proportions of carbohydrates, polysaccharides/monosaccharides, and different fibers on the metabolic control in diabetic rats. Metabolism 35:919–923

    Article  CAS  Google Scholar 

  82. Wolever TMS, Katzman-Relle L, Jenkins AL, Vuksna V, Josse RG, Jenkins DJA (1994) Glycaemic index of 102 complex carbohydrate foods in patients with diabetes. Nutr Res 14:651–669

    Article  Google Scholar 

  83. Jenkins DJA, Thorne MJ, Camelon K, Jenkins A, Rao AV, Taylor RH, Thompson LU, Kalmusky J, Reichert R, Francis T (1982) Effect of processing on digestibility and the blood glucose response: a study of lentils. Am J Clin Nutr 36:1093–1101

    CAS  Google Scholar 

  84. Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV (1981) Glycaemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366

    CAS  Google Scholar 

  85. Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycaemic index and glycaemic load values. Am J Clin Nutr 76:5–56

    CAS  Google Scholar 

  86. Hodge AM, Englsih DR, O’dea K, Giles GG (2004) Glycaemic index and dietary fibre and the risk of type 2 diabetes. Diabetes Care 27:2701–2706

    Article  Google Scholar 

  87. Araya A, Contreras P, Alvina M, Vera G, Pak N (2002) Comparison between an in vitro method to determine carbohydrate digestion rate and the glycaemic response in young men. Eur J Clin Nutr 56:735–739

    Article  CAS  Google Scholar 

  88. Germaine KA, Samman S, Fryirs CG, Griffiths PJ, Johnson SK, Quail KJ (2008) Comparison of in vitro starch digestibility methods for predicting the glycaemic index of grain foods. J Sci Food Agric 88:652–658

    Article  CAS  Google Scholar 

  89. Chung HJ, Liu Q, Hoover R, Tom D, Warkentin C, Vandenberg A (2008) In vitro starch digestibility, expected glycaemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chem 111:316–321

    Article  CAS  Google Scholar 

  90. Mollard RC, Zykus A, Luhovyy BL, Nunez MF, Wong CL, Anderson GH (2011) The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br J Nutr 108:509–517

    Google Scholar 

  91. McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE (2010) Pulse consumption, satiety, and weight management. Adv Nutr 1:17–30

    Article  Google Scholar 

  92. Correa P (1981) Epidemiological correlations between diet and cancer frequency. Cancer Res 41:3685–3690

    CAS  Google Scholar 

  93. Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD (2005) Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer 114:628–633

    Article  CAS  Google Scholar 

  94. Akcicek E, Otles S, Esiyok D (2005) Cancer and its prevention by some horticultural and field crops in Turkey. Asian Pacific J Cancer Prev 6:224–230

    Google Scholar 

  95. Agurs-Collins T, Smoot D, Afful J, Makambi K, Adams-Campbell LL (2006) Legume intake and reduced colorectal adenoma risk in African–Americans. J Natl Black Nurses Assoc 17:6–12 (Abstract)

    Google Scholar 

  96. Bruce WR, Giacca A, Medline A (2000) Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 9:1271–1279

    CAS  Google Scholar 

  97. Nichenametla SN, Taruscio TG, Barney DL, Exon JH (2006) A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 46:161–183

    Article  CAS  Google Scholar 

  98. Losso JN (2008) The biochemical and functional food properties of the Bowman–Birk inhibitor. Crit Rev Food Sci Nutr 4:94–118

    Article  CAS  Google Scholar 

  99. Kennedy AR (1998) The Bowman–Birk inhibitor from soybeans as an anticarcinogenic agent. Am J Clin Nutr 68:1406S–1412S

    CAS  Google Scholar 

  100. Armstrong WB, Kennedy AR, Wan XS, Taylor TH, Nguyen QA, Jensen J, Thompson W, Lagerberg W, Meyskens FL (2000) Single-dose administration of Bowman–Birk inhibitor concentrates in patients with oral leukoplakia. Cancer Epidemiol Biomarkers Prev 9:43–47

    CAS  Google Scholar 

  101. Milner JA, McDonald SS, Anderson DE, Greenwald P (2001) Molecular targets for nutrients involved with cancer prevention. Nutr Cancer 41:1–16

    CAS  Google Scholar 

  102. Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37:948–965

    Article  CAS  Google Scholar 

  103. Chen C, Kong ANT (2005) Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 26:318–326

    Article  CAS  Google Scholar 

  104. Gescher AJ, Sharma RA, Steward WP (2001) Cancer chemoprevention by dietary constituents: a tale of failure and promise. Lancet Oncol 2:371–379

    Article  CAS  Google Scholar 

  105. Marks G, Aydos RDA, Fagundes DJ, Pontes ERJC, Takita LC, Amaral EGAS, Rossini A, Ynouye AM (2006) Modulation of transforming growth factor beta2 (TGF-beta2) by inositol hexaphosphate in colon carcinogenesis in rats. Acta Cirúrgica Brasileira 21:51–56

    Article  Google Scholar 

  106. Verghese M, Rao DR, Chawana CB, Walker LT, Shackelford L (2006) Anticarcinogenic effect of phytic acid (IP6): apoptosis as a possible mechanism of action. LWT-Food Sci Technol 39:1093–1098

    Article  CAS  Google Scholar 

  107. Vucenik I, Shamsuddin AM (2006) Protection against cancer by dietary IP6 and inositol. Nutr Cancer 55:109–125

    Article  CAS  Google Scholar 

  108. Gurfinkel DM, Rao AV (2003) Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr Cancer 47:24–33

    Article  CAS  Google Scholar 

  109. Shomaf MS, Takruri HR, Faris MAIE (2012) Lentils (Lens culinaris L.) inhibit azoxymethane-induced colonic lesions and neoplasms in male Fischer 344 rats. Jordan Med J 45:231–239

    Google Scholar 

  110. Faris MAIE, Takruri HR, Shomaf MS, Bustanji YK (2009) Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr Res 29:355–362

    Article  CAS  Google Scholar 

  111. Talalay P (1998) Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv Enzyme Regul 28:237–250

    Article  Google Scholar 

  112. Pool-Zobel B, Veeriah S, Bohmer FD (2005) Modulation of xenobiotic metabolizing enzymes by anticarcinogens-focus on glutathione-S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res 591:74–92

    Article  CAS  Google Scholar 

  113. Khatiwada J, Verghese M, Walker LT, Shackelford L, Chawan CB, Sunkara R (2006) Combination of green tea, phytic acid, and inositol reduced the incidence of azoxymethane-induced colon tumors in Fisher 344 male rats. LWT- Food Sci Technol 39:1080–1086

    Article  CAS  Google Scholar 

  114. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S–1459S

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Mohamed Labib Salem/Department of Zoology, Tanta University/Egypt for his many helpful suggestions and comments. Thanks are due to Dr Omar Al-Haj at Department of Nutrition and Food Technology/King Saud University, and Mrs. Noor Hamed at Department of Nutrition/Petra University for their assistance in proofreading and editing the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo’ez Al-Islam Ezzat Faris.

About this article

Cite this article

Faris, M.AI.E., Takruri, H.R. & Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab 6, 3–16 (2013). https://doi.org/10.1007/s12349-012-0109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12349-012-0109-8

Keywords

Navigation