Advertisement

Thyroid and food: a Mediterranean perspective

  • Claudio Tubili
  • Lelio Morviducci
  • Maria Rosaria Nardone
  • Flavia Tubili
  • Daniela De Falco
  • Ugo Di Folco
Review

Abstract

Thyroid has a key role in energetic metabolism and its activity is influenced by caloric intake: reducing in prolonged fasting and malnutrition. Iodine deficiency may induce severe thyroid diseases; if it occurs during growth, it results in permanent disabling systemic damage. For this reason, local governments and WHO promote programs of iodine supplementation. Goitrogenic foods induce clinical damage only if ingested in great amounts and in case of iodine deficiency. The relationship among diet, foods and thyroid function is complex whether it regards iodine intake or its absorption and utilization favoring inhibiting nutrients. People with thyroid dysfunction should change some dietetic habits, choosing synergic nutrient-rich foods and reducing the antagonist ones; they should reduce fats for slowing their cellular oxidation rate and introduce proteins and carbohydrates at 20 and 55% of total energy intake, respectively.

Keywords

Thyroid Food Diet Iodine Goiter 

Notes

Conflict of interest

None.

References

  1. 1.
    Sarne D (2004) Effects of the environment, chemicals and drugs on thyroid function http://www.thyroidmanager.org/Chapter5/5a-frame.htm
  2. 2.
    St. Germain D.Ll (2001) Thyroid hormone metabolism. In: DeGroot LJ, Jameson JL (eds) Endocrinology, 4th edn. Philadelphia, Saunders, pp 1861–1871Google Scholar
  3. 3.
    Mathieson RA, Walberg JL, Gwazdauskas FC, Hinkle DE, Gregg JM (1986) The effect of varying carbohydrate content of a very-low-caloric diet on resting metabolic rate and thyroid hormones. Metabolism 35(5):394–398CrossRefGoogle Scholar
  4. 4.
    Osburne RC, Myers EA, Rodbard D, Burman KD, Georges LP, O’Brian JT (1983) Adaptation to hypocaloric feeding: physiologic significance of the fall in serum. T3 as measured by the pulse wave arrival time (QKd). Metabolism 32(1):9–13CrossRefGoogle Scholar
  5. 5.
    Kaptein EM, Robinson WJ, Grieb DA, Nicoloff JT (1982) Peripheral serum thyroxine, triiodothyronine and reverse triiodothyronine kinetics in the low thyroxine state of acute nonthyroidal illnesses. A noncompartmental analysis. J Clin Invest 69(3):526–535CrossRefGoogle Scholar
  6. 6.
    Azizi F (1978) Effect of dietary composition on fasting-induced changes in serum thyroid hormones and thyrotropin. 27:935-942Google Scholar
  7. 7.
    Carlson HE, Drenick EJ, Chopra IJ, Hershman JM (1977) Alterations in basal and TRH stimulated serum levels of thyrotropin, prolactin, and thyroid hormones in starved obese men. J Clin Endocrinol Metab 45:707CrossRefGoogle Scholar
  8. 8.
    Naslund E, Andersson I, Degerblad M, Kogner P, Kral JG, Rossner S, Hellstrom PM (2000) Associations of leptin, insulin resistance and thyroid function with long-term weight loss in dieting obese men. J Intern Med 248(4):299–308CrossRefGoogle Scholar
  9. 9.
    Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F (2005) Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin Endocrinol (Oxf) 62(4):487–491CrossRefGoogle Scholar
  10. 10.
    Luvizotto RA, Conde SJ, Síbio MT, Nascimento AF, Lima-Leopoldo AP, Leopoldo AS, Padovani CR, Cicogna AC, Nogueira CR (2010) Administration of physiologic levels of triiodothyronine increases leptin expression in calorie-restricted obese rats, but does not influence weight loss. Metabolism 59(1):1–6Google Scholar
  11. 11.
    Macek Jilková Z, Pavelka S, Flachs P, Hensler M, Kus V, Kopecký J (2010) Modulation of type I iodothyronine 5′-deiodinase activity in white adipose tissue by nutrition: possible involvement of leptin. Physiol Res 59(4):561–569 Google Scholar
  12. 12.
    Bergendahl M, Vance ML, Iranmanesh A, Thorner MO, Veldhuis JD (1996) Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in healthy men. J Clin Endocrinol Metab 81(2):692–699CrossRefGoogle Scholar
  13. 13.
    Jung RT, Shetty PS, James WPT (1980) Nutritional effects on thyroid and catecholamine metabolism. Clin Sci 58:183Google Scholar
  14. 14.
    Tubili C, Hassan OMS (1999) Aspetti nutrizionali del trattamento in Day Hospital dell’anoressia nervosa in Annali degli Ospedali San Camillo e Forlanini 1: 78–87Google Scholar
  15. 15.
    Burger AG, O’Connell M, Scheidegger K, Woo R, Danforth E Jr (1987) Monodeiodination of triiodothyronine and reverse triiodothyronine during low and high calorie diets. J Clin Endocrinol Metab 65(5):829–835CrossRefGoogle Scholar
  16. 16.
    Danforth E Jr, Horton ES, O’Connell M et al (1979) Dietary-induced alterations in thyroid hormone metabolism during overnutrition. J Clin Invest 64:1336CrossRefGoogle Scholar
  17. 17.
    Livelli di Assunzione Raccomandati di Energia e Nutrienti per la Popolazione Italiana LARN, Società Italiana di Nutrizione Umana (SINU). http://www.sinu.it/larn/mineral1.asp#IODIO
  18. 18.
  19. 19.
  20. 20.
  21. 21.
    Comparative analysis of progress on the elimination of iodine deficiency disorders (2000) Copenhagen, WHO Regional Office for Europe; The World Health report, health system: improving performance. Geneva, World Health OrganizationGoogle Scholar
  22. 22.
    WHO, UNICEF, and ICCIDD (1999) Progress towards the elimination of iodine deficiency disorders (IDD). WHO publ. WHO/NHD/99.4, Geneva, pp 1–33Google Scholar
  23. 23.
    Suzuki H, Higuchi T, Sawa K, Ohtaki S, Horiuchi Y (1965) “Endemic coast goitre” in Hokkaido, Japan. Acta Endocrinol 50:161Google Scholar
  24. 24.
    Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M, Miyashita K, Yajima T, Hara H (2009) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated. Eur J Nutr 49:243–249Google Scholar
  25. 25.
    Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS (2009) Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res 53(12):1603–1611CrossRefGoogle Scholar
  26. 26.
    Mussig K, Thamer C, Bares R, Lipp HP, Haring HU, Gallwitz BJ (2006) Iodine-induced thyrotoxicosis after ingestion of kelp-containing tea. Gen Intern Med 21(6):C11–C14CrossRefGoogle Scholar
  27. 27.
    Norman JA, Pickford CJ, Sanders TW, Walzer M (1988) Human intake of arsenic and iodine from seaweed supplements and health foods avalaible in the UK. Food Addit Contain 5:103CrossRefGoogle Scholar
  28. 28.
    Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332(2):392–397CrossRefGoogle Scholar
  29. 29.
    Maeda H, Tsukui T, Sashima T, Hosokawa M, Miyashita K (2008) Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr 17(Suppl 1):196–199Google Scholar
  30. 30.
    Norman JA, Pickford CJ, Sanders TW, Walzer M (1988) Human intake of arsenic and iodine from seaweed supplements and health foods available in the UK. Food Addit Contain 5:103CrossRefGoogle Scholar
  31. 31.
    Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332(2):392–397CrossRefGoogle Scholar
  32. 32.
    Boyle JA, Greig WR, Fulton S, Dalakos TG (1966) Excess dietary calcium and human thyroid function. J Endocrinol 34:532CrossRefGoogle Scholar
  33. 33.
    Singh N, Weisler SL, Hershman JM (2001) The acute effect of calcium carbonate on the intestinal absorption of levothyroxine. Thyroid 11:967–971CrossRefGoogle Scholar
  34. 34.
    Tasneem Gul Kazi, Ghulam Abbas Kandhro (2010) Interaction of copper with iron, iodine, and thyroid hormone status in goitrous. J Endocrinol 134(3):265–279Google Scholar
  35. 35.
    Pavelka S (2004) Metabolism of bromide and its interference with the metabolism of iodine. Physiol Res 53(Suppl 1):S81–S90Google Scholar
  36. 36.
    Siddiqui AH (1960) Incidence of simple goitre in areas of endemic fluorosis. J Endocrinol 20:201CrossRefGoogle Scholar
  37. 37.
    Stangl GI, Schwartz FJ, Kirchgessner M (1999) Cobalt deficiency effects on trace elements, hormones and enzymes involved in energy metabolism in cattle. Int J Vitam Nutr Res 69:120–126CrossRefGoogle Scholar
  38. 38.
    Pimentel-Malussena E, Roche M, Layrisse M (1958) Treatment of eight cases of hyperthyroidism with cobaltous chloride. J Am Med Assoc 167(14):1719–1722CrossRefGoogle Scholar
  39. 39.
    Bocchetta A, Loviselli A (2006) Lithium treatment and thyroid abnormalities. Clin Pract Epidemol Ment Health 2:23CrossRefGoogle Scholar
  40. 40.
    Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocystein-containing enzyme. Nature 349:438CrossRefGoogle Scholar
  41. 41.
    Olivieri O, Girelli D, Stanzial AM, Rossi L, Bassi A, Corrocher R (1996) Selenium, sinc and thyroid hormones in healthy subjects: low T3/T4 ratio in the elderly is related to selenium status. Biol Trace Elem Res 51:31–34CrossRefGoogle Scholar
  42. 42.
    Zukalova H, Vasak J (2002) The role and effects of glucosinolates of brassica speciesGoogle Scholar
  43. 43.
    FAO (2002) Partnership formed to improve cassava, staple food of 600 million people, pp 25–30. http://www.fao.org/english/newsroom/news/2002/10541-en.html
  44. 44.
    Ekpechi OL, Dimitriadou A, Fraser R (1966) Goitrogenic activity of cassava (a staple Nigerian food). Nature 210(5041):1137–1138CrossRefGoogle Scholar
  45. 45.
    Thilly CH, Swennen B, Bourdoux P, Ntambue K, Moreno-Reyes R, Gillies J, Vanderpas JB (1993) The epidemiology of iodine-deficiency disorders in relation to goitrogenic factors and thyroid-stimulating-hormone regulation. Am J Clin Nutr 57(2 Suppl):267–270Google Scholar
  46. 46.
    Heaney RK, Fenwick GR (1995) Natural toxins and protective factors in brassica species, including rapeseed. Nat Toxins 3(4):233–237CrossRefGoogle Scholar
  47. 47.
    Knudsen N, Laurberg P, Perrild H, Bulow I, Ovesen L, Jorgensen T (2002) Risk factors for goiter and thyroid nodules. Thyroid 12(10):879–888CrossRefGoogle Scholar
  48. 48.
    J Dairy Sci, Miller JK, Moss BR (1975) Effect of thyroid status and thiocyanate on absorption and excretion of iodine by cattle. 58(4):526–531Google Scholar
  49. 49.
    Bell DS, Ovalle F (2001) Use of soy protein supplement and resultant need for increased dose of levothyroxine. Endocr Pract 7(3):193–194Google Scholar
  50. 50.
    Doerge DR, Chang HC (2002) Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 777(1–2): 269–279Google Scholar
  51. 51.
    Radovic B, Mentrup B, Kohrle J (2006) Genistein and other soya isoflavones are potent ligands for transthyretin in serum and cerebrospinal fluid. Br J Nutr 95(6):1171–1176CrossRefGoogle Scholar
  52. 52.
    Hamann I, Seidlova-Wuttke D, Wuttke W, Kohrle J (2006) Effects of isoflavonoids and other plant-derived compounds on the hypothalamus-pituitary-thyroid hormone axis. Maturitas 55 (Suppl 1):S14–S25 (Epub Aug)Google Scholar
  53. 53.
    Laway BA, Zargar AH (2006) Iodine deficiency disorders in India. J Indian Med Assoc 104(10):554–556Google Scholar
  54. 54.
    Jabbar MA (1997) Abnormal thyroid function test in infants with congenital hypothyroidism: the influence of soy-based formula. J Am Coll Nutr 16:280–282Google Scholar
  55. 55.
    Dorea JG (2004) Maternal thiocyanate and thyroid status during breast-feeding. J Am Coll Nutr 23(2):97–101Google Scholar
  56. 56.
    Laurberg P, Andersen S, Knudsen N, Ovesen L, Nohr SB, Pedersen IB (2002) Thiocyanate in food and iodine in milk: from domestic animal feeding to improved understanding of cretinism. Thyroid 12:897–902CrossRefGoogle Scholar
  57. 57.
    Linazasoro JM, Sanchez-Martin JA, Jiminez-Diaz C (1966) Goitrogenic effect of walnuts. Lancet 2:501CrossRefGoogle Scholar
  58. 58.
    Gaitan E, Wahner HW, Correa P (1968) Endemic goiter in the Cauca Valley: I. Results and limitations of twelve years of iodine prophylaxis. J Clin Endocrinol Metab 28:1730CrossRefGoogle Scholar
  59. 59.
    Maratou E, Hadjidakis DJ, Kollias A, Tsegka K, Peppa M, Alevizaki M, Mitrou P, Lambadiari V, Boutati E, Nikzas D, Tountas N, Economopoulos T, Raptis SA, Dimitriadis G (2009) Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur J Endocrinol 160(5):785–790CrossRefGoogle Scholar
  60. 60.
    Cassio A, Ricci G, Baronio F, Miniaci A, Bal M, Bigucci B, Conti V, Cicognani A (2010) Long-term clinical significance of thyroid autoimmunity in children with celiac disease. J Pediatr 156(2):292–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Claudio Tubili
    • 1
  • Lelio Morviducci
    • 1
  • Maria Rosaria Nardone
    • 1
  • Flavia Tubili
    • 1
  • Daniela De Falco
    • 2
  • Ugo Di Folco
    • 1
  1. 1.UOS di Diabetologia con DH, Az. Osp. “S. Camillo-Forlanini”RomaItaly
  2. 2.UOC Farmacia Osp. “Parodi Delfino”, AUSL RM G ColleferroRomaItaly

Personalised recommendations