Prebiotics: future trends in health care

  • Rupali Singh
  • Pramod Kumar Sharma
  • Rishabha Malviya


Prebiotics are the non-digestible food ingredients, which help in the successful digestion of the food components in the gut and lower intestine. They play an important role in the promotion of the growth of “good” bacteria in the intestine and gut of humans. In other words, nutraceuticals are beneficial for the maintenance of gut microbiota, microflora, and human health. This study specially reviewed different articles on the role of prebiotics in hepatic encephalopathy, cardiovascular diseases, constipation, diarrhea, hypotriglyceridemia, and type 2 diabetes. In conclusion, prebiotics are supplements to improve health and can favorably treat biological disorders.


Prebiotics Gut microflora Nutraceuticals 



Authors are highly thanks full to Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology for providing necessary guidance and facilities. Authors would like to thanks NISCAIR (National Library) New Delhi for providing library facilities.

Conflict of interest



  1. 1.
    Bronzwaer S (2008) EFSA scientific forum “from safe food to healthy diets”. EU risk assessment—past present and future. Trends Food Sci Technol 19:S2–S8CrossRefGoogle Scholar
  2. 2.
    Roberts SB, Rosenberg I (2006) Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev 86:651–667CrossRefGoogle Scholar
  3. 3.
    Perez-Cueto FJ, Verbeke W, de Barcellos MD, Grunert KG et al (2009) Food-related lifestyles and their association to obesity in five European countries. Appetite 54:156–562CrossRefGoogle Scholar
  4. 4.
    Gilbert RL, Mielke JH (eds) (1985) The analysis of prehistoric diets. Academic Press, Orlando, pp 622Google Scholar
  5. 5.
    Eaton SB, Eaton SB III, Konner MJ, Shostak M (1996) An evolutionary perspective enhances understanding of human nutritional requirements. J Nutr 126:1732–1740Google Scholar
  6. 6.
    Eaton SB, Eaton SB III, Konner MJ (1997) Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr 51:207–216Google Scholar
  7. 7.
    Roskam AJ, Kunst AE, Van Oyen H et al (2009) Comparative appraisal of educational inequalities in overweight and obesity among adults in 19 European countries. Int J Epidemiol (Epub ahead of print)Google Scholar
  8. 8.
    Crawford MA, Marsh D (1995) Nutrition and evolution. Keats Publishing, New CanaanGoogle Scholar
  9. 9.
    Bland JS (1996) Phytonutrition, phytotherapy, and phytopharmacology. Altern Ther Health Med 2:73–76Google Scholar
  10. 10.
    Berger MM, Shenkin A (2006) Vitamins and trace elements: practical aspects of supplementation. Nutrition 22:952–955CrossRefGoogle Scholar
  11. 11.
    Bagchi D (2006) Nutraceuticals and functional foods regulations in the United States and around the world. Toxicol 221:1–3CrossRefGoogle Scholar
  12. 12.
    Ramaa CS, Shirode AR, Mundada AS, Kadam VJ (2006) Nutraceuticals—an emerging era in the treatment and prevention of cardiovascular diseases. Curr Pharm Biotechnol 7:15–23CrossRefGoogle Scholar
  13. 13.
    Brower V (1998) Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 16:728–731CrossRefGoogle Scholar
  14. 14.
    Zeisel SH (1999) Regulation of “Nutraceuticals”. Science 285:185–186CrossRefGoogle Scholar
  15. 15.
    Whitman M (2001) Understanding the perceived need for complementary and alternative nutraceuticals: lifestyle issues. Clin J Oncol Nurs 5:190–194Google Scholar
  16. 16.
    Koletzko B, Aggett PJ, Bindels JG et al (1998) Growth, development and differentiation: a functional food science approach. Br J Nutr 80(Suppl):5–45CrossRefGoogle Scholar
  17. 17.
    Halsted CH (2003) Dietary supplements and functional foods: 2 sides of a coin? Am J Clin Nutr 77:1001S–1007SGoogle Scholar
  18. 18.
    FDA/CFSAN resources page. Food and Drug Administration Web site. Dietary Supplement Health and Education Act of 1994. Available at:
  19. 19.
    DeFelice SL (2002) FIM Rationale and Proposed Guidelines for the Nutraceutical Research & Education Act (NREA), November 10. Foundation for Innovation in Medicine. Available at:
  20. 20.
    Ross S (2000) Functional foods: the Food and Drug Administration perspective. Am J Clin Nutr (Suppl) 71:1735–1738Google Scholar
  21. 21.
    Iriti M, Vitatini S, Fico G et al (2010) Neureoprotective herbs and foods from different traditional medicines and diets. Molecules 15:3517–3555CrossRefGoogle Scholar
  22. 22.
    Gidley MJ (2004) Naturally functional foods—challenges and opportunities. Asia Pac J Clin Nutr 13(Suppl):31Google Scholar
  23. 23.
    Kalra EK (2003) Nutraceuticals—definition introduction. AAPS Pharm Sci 5:2–3CrossRefGoogle Scholar
  24. 24.
    Food and Agriculture Organisation of the United States (FAO). Report on Functional Foods, Food Quality and Standard Service (AGNS), 2007. Available online: (accessed on February 2010)
  25. 25.
    FDA/CFSAN resources page. Food and Drug Administration. Dietary Supplement Health and Education Act of 1994. Available from:
  26. 26.
    Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. CRC Press, Boca RatonGoogle Scholar
  27. 27.
    Kalra EK (2003) Nutraceuticals—definition and introduction. AAPS Pharm Sci 5:25. Available online: (accessed on 25 February 2010)
  28. 28.
    De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66Google Scholar
  29. 29.
    Douglas LC, Sanders ME (2008) Probiotics and prebiotics in dietetics practice. J Am Diet Assoc 108:510–552CrossRefGoogle Scholar
  30. 30.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microflora: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  31. 31.
    Bellisle F, Diplock AT, Hornstra G et al (1998) Functional food science in Europe. Br J Nutr 80(Suppl):S3–S4Google Scholar
  32. 32.
    Clydesdale F (1997) A proposal for the establishment of scientific criteria for health claims for functional foods. Nutr Rev 55:413–422CrossRefGoogle Scholar
  33. 33.
    Roberfroid MB (2000) Concepts and strategy of functional food science: the European perspective. Am J Clin Nutr 71(Suppl):1660S–1664SGoogle Scholar
  34. 34.
    Roberfroid MB (1996) Functional effects of food components and the gastrointestinal system: chicory fructooligosaccharides. Nutr Rev 54:S38–S42CrossRefGoogle Scholar
  35. 35.
    Hoebregs H (1997) Fructans in foods and food products, ion-exchange chromatographic method: collaborative study. J Assoc Off Anal Chem Int 80:1029–1037Google Scholar
  36. 36.
    Van Loo J, Coussement P, De Leenheer L et al (1995) On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35:525–552CrossRefGoogle Scholar
  37. 37.
    Cummings JH, Roberfroid MB (1997) A new look at dietary carbohydrate: chemistry, physiology and health. Eur J Clin Nutr 51:417–442CrossRefGoogle Scholar
  38. 38.
    Blaut M (2002) Relationship of prebiotics and food to intestinal microflora—an introduction. Eur J Nutr 41. doi: 10.1007/s00394-002-1102-7
  39. 39.
    Drasar BS, Roberts AK (1990) Control of the large bowel microflora. In: Hill MJ, Marsh PD (eds) Human microbial ecology. CRC Press, Boca Raton, pp 87–111Google Scholar
  40. 40.
    Park SF, Kroll RG (1993) Expression of listeriolysin and phosphatidylinositol-specific phopholipase C is repressed by the plant derived molecule cellebiose Listeria monocytogenes. Mol Microbiol 86:53–61Google Scholar
  41. 41.
    Tannock GW (2002) Probiotics and prebiotics: where we are going? In: Tannock GW (ed) Probiotics and prebiotics: where we are going? Caister Academic Press, Wymondham, pp 1–20Google Scholar
  42. 42.
    Roberfroid MB (2000) Prebiotics and probiotics: are they functional foods? Am J Clin Nutr 71:1682S–1687SGoogle Scholar
  43. 43.
    Scholz-Arhens KE, Schaafsma G, Schrezenmeir J et al (2001) Effects of prebiotics on mineral metabolism. Am. J Clin Nutr 73:2(Suppl4):59S–64SGoogle Scholar
  44. 44.
    Scholz Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral metabolism-experimental data and mechanism. Br J Nutr, 87(Suppl2):S179–S186Google Scholar
  45. 45.
    Coudary C, Demigne C, Rayssiguier Y (2003) Effects of dietary fibres on magnmesium absorption in animals and humans. J Nutr 133:1–4Google Scholar
  46. 46.
    Cashman K (2003) Prebiotics and calcium bioavailability. Curr Issues Intest Microbiol 4:21–32Google Scholar
  47. 47.
    Reddy BS, Rivenson A (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary and liver carcinogenesis induced by 2-amino-3 methylimidazol[4, 5-f]quinoline, a food mutagen. Cancer Res 53:3914–3918Google Scholar
  48. 48.
    Fiordaliso M, Kok N, Desager JP et al (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30:163–167CrossRefGoogle Scholar
  49. 49.
    Takase S, Goda T, Watanabe M (1994) Mono stearyl glycerol-starch complex: its digestibility and effects on glycemic and lipogenic responses. J Nutr 40:23–36Google Scholar
  50. 50.
    Davidson MH, Maki KC, Synecki C et al (1998) Evaluation of the influence of dietary inulin on serum lipids in adults with hypercholesterolemia. Nutrition 18:503–517Google Scholar
  51. 51.
    Reddy DS, Hamid R, Rao CV (1997) Effect of dietary oligofructose and inulin on colonic preneoplastic aberrant crypt foci inhibition. Carcinogenesis 18:1371–1374CrossRefGoogle Scholar
  52. 52.
    Rowland IR, Rumney CJ, Coutts JT, Lievense LC (1997) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced crypt foci in rats. Carcinogenesis 19:281–285CrossRefGoogle Scholar
  53. 53.
    Burr ML, Butland BK, King S, Vaughan Williams E (1989) Changes in asthma prevalence: two surveys 15 years. Arch Dis Child 64:1452–1456CrossRefGoogle Scholar
  54. 54.
    Halken S (2004) Prevention of allergic disease in childhood and epidermiological aspects of primary and secondary allergy prevention. Pediatr Allergy Immunol 15(Suppl 16):4–5Google Scholar
  55. 55.
    Presscott HM, Apajalahati JH, Rautonen N, Stowell J et al (2004) Polydextrose, lactitol and fructo oligosaccharides fermentation by colonic bacteria in a three stage continuous culture system. Appl Environ Microbiol 70:4505–4511CrossRefGoogle Scholar
  56. 56.
    Schultz Larsen F (1996) Atopic dermatitis: an increasing problem. Pediatr Allergy Immunol 7:51–53CrossRefGoogle Scholar
  57. 57.
    Holt PG, Sly PD, Bjorksten B (1997) Atopic versus infectious diseases in childhood: a question of balance? Pediatr Allergy Immunol 8:53–58CrossRefGoogle Scholar
  58. 58.
    Blaut M (2002) Eur J Nutr 41(Suppl1):111–116Google Scholar
  59. 59.
    Gasbarrini G, Montaltoa M, Assisi R (1999) The role of bacterial flora and its products in the functioning of the small Intestine Digestive and Liver Disease Supplements 1 (translation). Ital J Gastroenterol Hepatol 31:481–488Google Scholar
  60. 60.
    Kleessen B, Blaut M (2005) Modulation of gut mucosal biofilms. Br J Nutr 93(Suppl 1):S35–S40CrossRefGoogle Scholar
  61. 61.
    Roberfroid MB (2007) Prebiotics: the concept revisited. J Nutr 137:830S–837SGoogle Scholar
  62. 62.
    Haarman M, Knol J (2005) Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 71:2318–2324CrossRefGoogle Scholar
  63. 63.
    Scholtens PA, Alles MS, Bindels JG, Knol J et al (2006) Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: a randomised controlled clinical trial. J Pediatr Gastroenterol Nutr 42:553–559CrossRefGoogle Scholar
  64. 64.
    Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW (2006) Prebiotics galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun 74:6920–6928CrossRefGoogle Scholar
  65. 65.
    Gibson GR, Wills CL, Van Loo J (1994) Non-digestible oligosaccharides and bifidobacteria implication for health. Int Sugar J 96:381–387Google Scholar
  66. 66.
    Arjan PV, Jan K, Bernd S et al (2010) Specific prebiotic oligosaccharides modulate the early phase of a murine vaccination response. Int Immunopharmacol 10:619–625CrossRefGoogle Scholar
  67. 67.
    Mizota T (1996) Functional and nutritional foods containing bifidogenic factors. Bull Int Dairy Found 313:31–35Google Scholar
  68. 68.
    Gibson GR, Wang X (1994) Regulatory effect of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–420CrossRefGoogle Scholar
  69. 69.
    Kleessen B, Hartman L, Blaut M (2001) Oligofructose and long chain inulin influence the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr 86:291–300CrossRefGoogle Scholar
  70. 70.
    Watzl B, Girrbach S, Roller M (2005) Inulin, oligofructose and immunomodulation. Br J Nutr 93:S49–S55CrossRefGoogle Scholar
  71. 71.
    Videla S, Vilaseca J, Antolin M et al (2001) Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat. Am J Gastroenterol 96:1486–1493CrossRefGoogle Scholar
  72. 72.
    Welters CF, Heineman E, Thunnissen FB et al (2002) Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 45:621–627CrossRefGoogle Scholar
  73. 73.
    Hoentjen F, Welling G, Harmsen H et al (2005) Reduction of colitis in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis 11:977–985CrossRefGoogle Scholar
  74. 74.
    Lindsay JO, Whelan K, Stragg AJ et al (2006) Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 55:348–355CrossRefGoogle Scholar
  75. 75.
    Leenen CHM, Dieleman L (2007) Inulin and oligofructose in chronic inflammatory bowel disease. J Nutr 137:2572S–2575SGoogle Scholar
  76. 76.
    Burns AJ, Rowland IR (2000) Anti carcinogenicity of prebiotics and probiotics. Curr Issues Intest Microbiol 1:13–24Google Scholar
  77. 77.
    Gallahar DD, Khil J (1999) The effect of synbiotics on colon carcinogenesis in rats. J Nutr 129:1483S–1487SGoogle Scholar
  78. 78.
    Reddy BS (1999) Possible mechanisms by which pro and prebiotics influence colon carcinogenesis and tumor growth. J Nutr 129:1478S–1482SGoogle Scholar
  79. 79.
    Blei A, Cordoba J (2001) Hepatic encephalopathy. Am J Gastroenterol 96:1968–1976CrossRefGoogle Scholar
  80. 80.
    Groenweg M, Quero JC, De Bruijn I et al (1998) Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 28:45–49CrossRefGoogle Scholar
  81. 81.
    Weissenborn K, Ennen JC, Schomerus H, Ruckery N, Hecker H (2001) Neuropsychological characterization of hepatic encephalopathy. J Hepatol 34:768–773CrossRefGoogle Scholar
  82. 82.
    Solga SF (2001) Probiotics can treat hepatic encephalopathy. Med Hypotheses 61:307–313CrossRefGoogle Scholar
  83. 83.
    Vogels GD, Van der Drift C (1977) Degradation of purines and pyrimidines. Bacteriol Rev 40:403–468Google Scholar
  84. 84.
    Bongaerts GPA, Vogels GD (1976) Uric acid degradation by Bacillus fastidiosus strains. J Bacteriol 125:689–697Google Scholar
  85. 85.
    Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62:95–99CrossRefGoogle Scholar
  86. 86.
    Bongaerts G, Severijnen R, Timmerman H (2005) Effects of antibiotics, probiotics and prebiotics in the treatment of hepatic encephalopathy. Med Hypotrheses 64:64–68CrossRefGoogle Scholar
  87. 87.
    Marcil V, Delvin E, Garofalo C, Levy E (2003) Butyrate impairs lipid transport by inhibiting microsomal triglyceride transfer protein in Caco-2 cells. J Nutr 133:2180–2183Google Scholar
  88. 88.
    Borthakur A, Saksena S, Gill RK et al (2008) Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappa pathway. J Cell Biochem 103:1452–1463CrossRefGoogle Scholar
  89. 89.
    Bruzzese E, Volpicelli M, Squaglia M, Tartaglione A et al (2006) Impact of prebiotics on human health digestive and liver disease 38(Suppl):S283–S287CrossRefGoogle Scholar
  90. 90.
    Roberfroid MB (2005) Introducing inulin-type fructans. Br J Nutr 93:S13–S25CrossRefGoogle Scholar
  91. 91.
    Napolitano A, Costabile A, Martin-Pelaez S et al (2009) Potential prebiotics activity of oligosaccharides obtained by enzymatic conversion of durum wheat insoluble dietary fibre into soluble dietary fiber. Nutr Metab Cardiovasc Dis 19:283–290Google Scholar
  92. 92.
    Howard MD, Gordon DT, Garleb KA, Kerley MS (1995) Dietary fructooligosaccharide, xylooligosaccharide and gum arabic have variable effects on cecal and colonic microbiota and epithelial cell proliferation in mice and rats. J Nutr 125:2604–2609Google Scholar
  93. 93.
    Roberfroid MB, Van Loo JAE, Gibson GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 128:11–19Google Scholar
  94. 94.
    Levrat MA, Rémésy C, Demigné C (1991) High propionic-acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121:1730–1737Google Scholar
  95. 95.
    Napolitano A, Costabile A, Martin-Pelaez S et al (2009) Potential prebiotic activity of oligosaccharides obtained by enzymatic conversion of durum wheat insoluble dietary fibre into soluble dietary fibre. Nutr Metab Cardiovasc Dis 19:283–290CrossRefGoogle Scholar
  96. 96.
    Durmic Z, Pethic DW, Pluske JR, Hampson DJ (1998) Changes in bacterial populations in the colon of pigs fed different sources of dietary fibre, and the development of swine dysentery after experimental infection. J Appl Microbiol 85:574–582CrossRefGoogle Scholar
  97. 97.
    Gómez-Conde MS, Garcia J, Chamorro S, Eiras P et al (2007) Neutral detergent-soluble fiber improves gut barrier function in twenty five-day-old weaned rabbits. J Anim Sci 85:3313–3321CrossRefGoogle Scholar
  98. 98.
    Coppa GV, Zampini L, Galeazzi T, Gabrielli O (2006) Prebiotics in human milk: a review digestive and liver disease 38(Suppl):S291–S294CrossRefGoogle Scholar
  99. 99.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota—introducing the concept of prebiotics. J Nutr 125(6):1401–1412Google Scholar
  100. 100.
    De Souza VMC, Santos SF, Sgarbieri C (2011) The importance of prebiotics in functional foods and clinical practice. Food Nutr Sci 2:133–144Google Scholar
  101. 101.
    Carabin IG, Flamm WG (1999) Evaluation of safety of inulin and oligofructoseas. Dietary fibre. Regul Toxicol Pharmacol 30(3):268–282CrossRefGoogle Scholar
  102. 102.
    Modler HW (1994) Bifidogenic factors—sources, metabolism and applications. Int Dairy J 4(5):383–407CrossRefGoogle Scholar
  103. 103.
    Chung Y, Hsu C, Ko C, Chan Y (2007) Dietary Intake of Xylooligosaccharides improves the intestinal microbiota, Feed moisture and pH value in the elderly. Nutr Res 27(12):756–761Google Scholar
  104. 104.
    Nagendra R, Vishwanathan S, KumarS A, MurthyB K, Rao SV (1995) Effects of feeding milk formula containing lactulose to infants on fecal bifidobacterialflora. Nutr Res 15(1):15–24CrossRefGoogle Scholar
  105. 105.
    Passos LML, Park YK (2003) Fructooligosaccharides: implications in human health being and use in foods. Ciencia Rural 33(2):385–390CrossRefGoogle Scholar
  106. 106.
    Tuohy KM, Rouzaud GCM, Bruck WM, Gibson GR (2005) Modulation of the human gut microflora towards improved health using prebiotics—assessment of efficacy. Curr Pharm Des 11(1):75–90CrossRefGoogle Scholar
  107. 107.
    Tahiri M, Tressol JC, Arnaud J et al (2001) Five-week intake of short-chain fructooligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 16:2152–2160CrossRefGoogle Scholar
  108. 108.
    Boehm G. Stahl B, Oligosaccharides (2003) In: Mttila-Sandhlm T (ed) Functional dairy products. Woodhead Publ., Cambridge, pp 203–243Google Scholar
  109. 109.
    Moro G, Minoli I, Mosca M et al (2002) Dosage related bifidogenic effects lof galactooligosaccharides and fructo oligosaccharides in formula fed ferm infants. J Pediatr Gastroenterol Nutr 34:291–295CrossRefGoogle Scholar
  110. 110.
    Jie Z, Bang-Yao L, Ming-Jie X, Hai-Wei L, Zu-Kang Z, Ting-Song W et al (2000) Studies on then Effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr 72(6):1503–1509Google Scholar
  111. 111.
    H. Tomomatsu (1994) Health effects of oligosaccharides. Food Technol 48(10):61–65Google Scholar
  112. 112.
    Englyst HN, Cummings JH (1987) Digestion of polysaccharides of potato in the small intestine of man. Am J Clin Nutr 45:423–431Google Scholar
  113. 113.
    Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87(Suppl 2):S187–S191CrossRefGoogle Scholar
  114. 114.
    Abrams SA, Griffin IJ, Hawthorne KM (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476Google Scholar
  115. 115.
    Van den Heuvel EG, Muijs T, Van Dokkum W, Schaafsma G (1999) Lactulose stimulates calcium absorption in postmenopausal women. J Bone Miner Res 14:1211–1216CrossRefGoogle Scholar
  116. 116.
    Tateyama I, Hashii K, Johno I (2005) Effect of xylooligosaccharide intake on severe constipation in pregnant women. J Nutr Sci Vitaminol 51:445–448CrossRefGoogle Scholar
  117. 117.
    Livesey G (2003) Health potential of polyol as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rupali Singh
    • 1
  • Pramod Kumar Sharma
    • 1
  • Rishabha Malviya
    • 1
  1. 1.Department of Pharmaceutical TechnologyMeerut Institute of Engineering and TechnologyMeerutIndia

Personalised recommendations