Possible reduction of cardiovascular risk in the elderly: prevention of post-prandial hyperglycaemic “spikes” by acarbose

Review
  • 42 Downloads

Abstract

A condition of insulin resistance (IR) frequently occurs in the elderly. This is because of some age-related hormonal and metabolic changes, which are responsible for increased serum levels of fasting blood glucose. IR also induces an increased and prolonged serum value of post-prandial hyperglycaemia, favouring the atherosclerotic process and frequent acute cardiovascular events. This review examines how the post-prandial hyperglycaemic “spikes” play a major role in vascular damage in aged individuals with or without diabetes mellitus. This occurs through oxidative stress, endothelial dysfunction and subclinical inflammation induced by IR, as illustrated by numerous experiments and clinical reports. The evidence opposing all this is from two major trials, the STOP-NIDDM study and the recent HEART2D study. Finally, it is hypothesised that a daily dose of acarbose may prevent or mitigate this damage in aged people without overt diabetes mellitus.

Keywords

Insulin resistance Post-prandial hyperglycaemia Elderly Cardiovascular disease Acarbose 

Notes

Conflict of interest

None.

References

  1. 1.
    Halter JB (ed) (1995) Carboydrate metabolism. In: Handbook of Physiology. Aging. Bethesda, MD. Am Physiol Soc chapt 7, pp 119–145Google Scholar
  2. 2.
    Chang AM, Halter J (ed) (2003) Aging and insulin secretion. Am J Physiol Endocrinol Metab 284:E7–E12Google Scholar
  3. 3.
    Wilson PW, Anderson KM, Kannel WB (1986) Epidemiology of diabetes mellitus in the elderly. The Framingham Study. Am J Med 80:3–9CrossRefGoogle Scholar
  4. 4.
    Moller N, Gormsen L, Fuglsang J, Gjedsted J (2003) Effects of ageing on insulin secretion and action. Horm Res 60(Suppl):102–104CrossRefGoogle Scholar
  5. 5.
    Iozzo P, Beck-Nielsen H, Laakso M, Smith U, Yki-Jervinen H, Ferranini E (1999) Independent influence of age on basal insulin secretion in non-diabetic humans. J Clin Endocrinol Metab 84:863–868CrossRefGoogle Scholar
  6. 6.
    Fink RJ, Kolterman OG, Griffin J, Olefsky JM (1983) Mechanisms of insulin resistance in aging. J Clin Invest 71:1523–1535CrossRefGoogle Scholar
  7. 7.
    Heine RJ, Dekker JM (2002) Beyond postprandial hyperglycaemia: metabolic factors associated with cardiovascular disease. Diabetologia 45:461–475CrossRefGoogle Scholar
  8. 8.
    Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schumechel H, Ziegelasch HJ, Lindner J, The DIS Group (1996) Risk factors for myocardial infarction and death in newly detected NIDDM: the diabetes intervention study, 11 year follow-up. Diabetologia 39:1577–1583CrossRefGoogle Scholar
  9. 9.
    Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, Temelkova-Kurktschiev T (1999) Post-prandial plasma glucose in an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Artherosclerosis 144:229–235CrossRefGoogle Scholar
  10. 10.
    Ceriello A (1999) Hyperglycaemia: the bridge between non enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diab Nutr Metab 12:42–46Google Scholar
  11. 11.
    The DECODE Study Group, the European Diabetes Epidemiology Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet 354:617–621CrossRefGoogle Scholar
  12. 12.
    Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial. http://www.Clinicaltrials.gov/ct/show/NCTOOO0620?order=1
  13. 13.
    Abraira C, Duckworth W, Mc Carren M, Emanuele N, Arca D, Reda D, Henderson W, for the participants of the VA Cooperative Study of Glycemic Control and Complications in Diabetes Mellitus Type 2 (2003) Design of the cooperative study on glycemic control and complications in diabetes mellitus type 2. J Diabetes Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787–791Google Scholar
  14. 14.
    Rosen P, Nawroth PP, King G et al (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diab Metab Res Rev 17:189–212CrossRefGoogle Scholar
  15. 15.
    Ronson RS, Nakamura M, Vinten-Johansen J (1999) The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res 44:47–59CrossRefGoogle Scholar
  16. 16.
    Asghar M, Lokhandwala MF (2006) Antioxidant tempol lowers age-related increases in insulin resistance in Fischer 344 rats. Clin Exp Hyper 28:533–541CrossRefGoogle Scholar
  17. 17.
    Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences and medical therapy: part I. Circulation 108:1527–1532CrossRefGoogle Scholar
  18. 18.
    Kurowska EM (2002) Nitric oxide therapies in vascular diseases. Curr Pharm Des 8:155–166CrossRefGoogle Scholar
  19. 19.
    Ceriello A, Giacomello R, Stel G, Motz E, Toboga C, Tonutti L, Pirisi M, Falleti E, Batoli E (1995) Hyperglycemia-induced thrombin formation in diabetes: the possibile role of the oxidative stress. Diabetes 44:924–928CrossRefGoogle Scholar
  20. 20.
    Yamagishi S, Edelstein D, Du XL, Brownlee M (2001) Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes 50:1491–1495CrossRefGoogle Scholar
  21. 21.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 103:813–820CrossRefGoogle Scholar
  22. 22.
    Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, Anfossi G, Costa G, Trovati M (2006) Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Endocrinol Metab 91:813–819CrossRefGoogle Scholar
  23. 23.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, The STOP-NIDDM Trial Research Group (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–494CrossRefGoogle Scholar
  24. 24.
    Hanefeld M, Chiasson JL, Koehler C et al (2004) Acarbose slows the progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke 35:1073–1078CrossRefGoogle Scholar
  25. 25.
    Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M (2004) Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: metanalysis of seven long-term studies. Eur Heart J 25:10–16CrossRefGoogle Scholar
  26. 26.
    Meneilly G, Ryan EA, Radziuk J, Lau DC, Yale JF, Morais J, Chiasson JL, Rabasa-Lhoret R, Maheux P, Tessier D, Wolever T, Josse RG, Elahi D (2000) Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 23:1162–1167CrossRefGoogle Scholar
  27. 27.
    Inoue I, Shinoda Y, Nakano T, Sassa M, Goto S, Awata T, Comoda T, Katayama S (2006) Acarbose ameliorates atherogenicity of low-density lipoprotein in patients with impaired glucose tolerance. Metabolism 55:946–952CrossRefGoogle Scholar
  28. 28.
    Rudofsky G, Reismann P, Schiekofer S, Petrov D, van Eynatten M, Humpert PM, Muller-Hoff C, Thanh-Phuong T, Lichtenstein S, Bartsch U, Haman A, Nawroth P, Bierhaus A (2004) Reduction of post-prandial hyperglycemia in patients with type 2 diabetes reduces NF-KB activation in PBMCs. Horm Metab Res 36:630–638CrossRefGoogle Scholar
  29. 29.
    Tschoepe D (2004) Decreased fibrinogen by treatment with the alpha-glucosidase inhibitor acarbose. Diabetes 53:A189Google Scholar
  30. 30.
    Schafer A, Widder J, Eigenthaler M, Bischoff H, Ertl G, Bauersacchs J (2004) Increased platelet activation in young Zucker rats with impaired glucose tolerance is improved by acarbose. Thromb Haemostat 92:97–103Google Scholar
  31. 31.
    Ceriello A, Taboga C, Tonutti L, Giacomello R, Stel L, Motz E, Pirisi M (1996) Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia 39:469–473CrossRefGoogle Scholar
  32. 32.
    Wang X, Lu J, Pan C (2003) Comparison of C-reactive protein level in different glucose tolerance subjects and the change in serum CRP level in IGT subjects with acarbose. Chin Endocrinol Metab 19:254–256Google Scholar
  33. 33.
    Koehler C, Schaper F, Bergmann S, Hanefeld M (2007) Effect of acarbose on subclinical inflammation and immune-response in early type 2 diabetes and risk of atherosclerosis (AI(I9)DA) study. Diab Vasc Dis Res 4:S152Google Scholar
  34. 34.
    Ledwig D, Muller H, Bischoff H, Eckel J (2002) Early acarbose treatment ameliorates resistence of insulin-regulated GLUT4 trafficking in obese Zucker rats. Eur J Pharmacol 445:141–148CrossRefGoogle Scholar
  35. 35.
    Raz I, Wilson PWF, Strojek K, Kowalska I, Borizov V, Gitt AK, Jermendy G, Campaigne BN, Kerr L, Milicevic Z, Jacober SJ (2009) Effects of postprandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D Trial. Diabetes Care 32:381–386CrossRefGoogle Scholar
  36. 36.
    Ceriello A (2009) Postprandial hyperglycemia and cardiovascular disease: is the HEART2D study the answer? Diabetes Care 32:521–522CrossRefGoogle Scholar
  37. 37.
    Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Golstein DE, Little RR, Wiedmeyer HS, Byrd-Holt DD (1988) Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults: the National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 21:518–524CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Cattedra di Medicina Interna, Seconda Facoltà di Medicina e ChirurgiaUniversità degli Studi di NapoliNaplesItaly

Personalised recommendations