Advertisement

In vivo and in vitro digestibility of the calcium contained in foods of animal and plant origin

  • Magnano San Lio Eugenia
  • Bruschi Sara
  • Mulazzi Annalisa
  • Calabrese Giorgio
  • Piva Gianfranco
  • Filippo Rossi
Original Article

Abstract

The aim of this study was to assess Ca digestibility using in vitro and in vivo methodology (rats). The tested foods were: cheese (Grana Padano; Emmentaler), soybean-based products (tofu; burger; milk; yogurt), and legumes (peas; beans). Ca digestibility was found to be high in Emmentaler (84.3%), Grana Padano (83.6%) and tofu (80.3%), with significantly lower values for soya burgers (64.1%) and soya milk (60.6%). The lowest values were detected in peas (49.6%) and beans (31.4%). Poor correlation was found between in vivo and in vitro data. The current RDAs have been established on the basis of 30% Ca digestibility, a value which reduces the risk of calcium deficiency but underestimates the contribution of dairy products. The adoption of specific, instead of general, digestibility values for each food might improve the accuracy of dietary formulations. This will require considerable efforts to develop simple and reliable in vitro methods to assess foods.

Keywords

Ca digestibility Legumes Cheese Anti-nutritional factors 

Notes

Acknowledgments

This work was supported by grants from “Fondazione Enrica e Romeo Invernizzi” and “Università Cattolica del Sacro Cuore”. Thanks are due to Marco Battaglia for his useful advice in the preparation of the manuscript.

Conflict of interest

GP is a member of the Scientific Committee of Grana Padano Consortium, the other authors have no conflict of interest related to the publication of this manuscript.

References

  1. 1.
    Guéguen L, Pointillart A (2000) The bioavailability of dietary calcium. J Am Coll Nutr 19:119S–136SGoogle Scholar
  2. 2.
    Allen LH (1982) Calcium bioavailability and absorption: a review. Am J Clin Nutr 35:783–808Google Scholar
  3. 3.
    Spencer H, Kramer L (1986) The calcium requirements and factors causing calcium loss. Fed Proc 45:2758–2762Google Scholar
  4. 4.
    Ferraretto A, Signorile A, Gravaghi C, Fiorilli A, Tettamanti G (2001) Casein Phosphopeptides influence calcium uptake by cultured human intestinal HT-29 tumor cells. J. Nutr 131:1655–1661Google Scholar
  5. 5.
    LARN (1996) Livelli di assunzioni raccomandati di energia e nutrienti per la popolazione italiana. SINU-INNGoogle Scholar
  6. 6.
    Perales S, Barbera′ R, Lagarda M, Farre′ R (2005) Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, and uptake and transport by Caco-2 cells). J Agric Food Chem 53:3721–3726CrossRefGoogle Scholar
  7. 7.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76 rodent diet. J Nutr 123:1939–1951Google Scholar
  8. 8.
    Istituto Nazionale di Ricerca sugli Alimenti e la Nutrizione (2001) Banca dati di composizione degli alimenti. INRAN, RomeGoogle Scholar
  9. 9.
    Woyengo TA, Cowieson AJ, Adeola O, Nyachoti CM (2009) Ileal digestibility and endogenous flow of minerals and amino acids: responses to dietary phytic acidin piglets. Br J Nutr 102:428–433CrossRefGoogle Scholar
  10. 10.
    Brink EJ, Dekker PR, van Beresteijn EC, Beynen AC (1992) Bioavailability of magnesium and calcium from cow’s milk and soya-bean beverage in rats. Br J Nutr 68:271–282CrossRefGoogle Scholar
  11. 11.
    Kumagai H, Koizumi A, Sato N, Ishikawa Y, Suda A, Sakurai H, Kumagai H (2004) Effect of phytate-removal and deamidation of soybean proteins on calcium absorption in the in situ rats. Biofactors 22:1–4CrossRefGoogle Scholar
  12. 12.
    Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ Sci B 9:165–191CrossRefGoogle Scholar
  13. 13.
    Peterson CA, Eurell JAC, Erdman JW Jr. (1992) Bone composition and histology of young growing rats fed diets of varied calcium bioavailability: spinach, non fat dry milk, or calcium carbonate added to casein. J Nutr 122:137–144Google Scholar
  14. 14.
    Lv Y, Bao XL, Yang BC, Ren CG, Guo ST (2008) Effect of soluble soybean protein hydrolysate-calcium complexes on calcium uptake by Caco-2 cells. J Food Sci 73:H168–H173CrossRefGoogle Scholar
  15. 15.
    Friedman M (1999) Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine and histidinoalanine in food, and other proteins. J Agric Food Chem 47(4):1295–1319CrossRefGoogle Scholar
  16. 16.
    Sarwar G, L’Abbé MR, Trick K, Botting HG, Ma CY (1999) Influence of feeding alkaline/heat processed proteins on growth and protein and mineral status of rats. Adv Exp Med Biol 459:161–77CrossRefGoogle Scholar
  17. 17.
    Van Dael P, Kastenmayer P, Clough J, Jarret A, Barclay DV, Maire JC (2005) Substitution of Casein by β-Casein or of whey protein isolate by α-lactalbumin does not affect mineral balance in growing rats. J Nutr 135:1438–1443Google Scholar
  18. 18.
    Buchowsky MS, Miller DD (1991) Lactose calcium source and age affect calcium bioavailability in rats. J Nutr 121:1746–1754Google Scholar
  19. 19.
    Ahmed A, Muhammad Anjum F, Rehman SU, Randhawa MA, Farroq U (2007) Bioavailability of calcium, iron and zinc fortified whole wheat flour chapatti. Plant Foods Human Nutr 63:7–13CrossRefGoogle Scholar
  20. 20.
    Panari G, Mongardi M, Nanni M (1988) Determinazione con metodi chimici delle frazioni azotate del formaggio Parmigiano-Reggiano. Report of Meeting “Ricerca triennale sulla composizione e su alcune caratteristiche peculiari del formaggio Parmigiano-Reggiano”, 28 March 1988. Consorzio Formaggio Parmigiano-Reggiano, Reggio EmiliaGoogle Scholar
  21. 21.
    Rickard AP, Chatfield MD, Conway RE, Stephen AM, Powell JJ (2009) An algorithm to assess intestinal iron availability for use in dietary surveys. Br J Nutr 102:1678-1685CrossRefGoogle Scholar
  22. 22.
    Matkovic V (1991) Calcium metabolism and calcium requirements during skeletal modelling and consolidation of bone mass. Am J Clin Nutr 54:245S-260SGoogle Scholar
  23. 23.
    Heaney RP, Skillman TG (1964) Secretions and excretion of calcium by the human gastrointestinal tract. J Lab Clin Med 64:29–41Google Scholar
  24. 24.
    Weaver CM (1994) Symposium: required versus optimal intakes: a look at Calcium. Age related Calcium requirements due to changes in absorption and utilization. J Nutrition 124:1418S–1425SGoogle Scholar
  25. 25.
    Hunt CD Johnson LAK (2007) Calcium requirements: new estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. Am J Clin Nutr 86:1054–1063Google Scholar
  26. 26.
    Società Italiana di Nutrizione Umana (2006) Livelli di assunzione giornalieri raccomandati di energia e nutrienti per la popolazione italiana. Available from http://www.sinu.it/larn. Accessed 6 Aug 2010

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Magnano San Lio Eugenia
    • 1
  • Bruschi Sara
    • 1
  • Mulazzi Annalisa
    • 1
  • Calabrese Giorgio
    • 1
  • Piva Gianfranco
    • 1
  • Filippo Rossi
    • 1
  1. 1.Istituto di Scienze degli Alimenti e della NutrizioneFacoltà di Agraria, Università Cattolica del Sacro CuorePiacenzaItaly

Personalised recommendations