Skip to main content

Advertisement

Log in

Contribution of honey in nutrition and human health: a review

  • Review
  • Published:
Mediterranean Journal of Nutrition and Metabolism

Abstract

Our manuscript shows that honey has a variety of positive nutritional and health effects. It contains at least 181 substances, is a supersaturated solution of sugars, and contains small amounts of proteins, enzymes, amino acids, minerals, trace elements, vitamins, aroma compounds and polyphones. This article reviews reports on the use of honey in the treatment of human disorders, which are supported by clinical tests and published in medical journals. First, the composition of honey is described, followed by its physiological and nutritional effects. Finally, the influence of honey on gastroenterology and cardiovascular effects is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Crane E (1983) The archaeology of beekeeping. Gerald Duckworth & Co, London

    Google Scholar 

  2. Crane E (1975) History of honey. In: Crane E (ed) Honey, a comprehensive survey. William Heinemann, London

    Google Scholar 

  3. Jones R (2001) Honey and healing through the ages. In: Munn P, Jones R (eds) Honey and healing. International Bee Research Association IBRA, Cardiff

    Google Scholar 

  4. Crane E (1999) The world history of beekeeping and honey hunting. Gerald Duckworth & Co, London

    Google Scholar 

  5. Allsop KA, Miller JB (1996) Honey revisited: a reappraisal of honey in pre-industrial diets. Br J Nutr 75:513–520

    Article  CAS  Google Scholar 

  6. Coulston AM (2000) Honey...how sweet it is! Nutr Today 35:96–100

    Article  Google Scholar 

  7. Bogdanov S, Jurendic T, Sieber R et al (2008) Honey for nutrition and health: a review. Am J Coll Nutr 27:677–689

    CAS  Google Scholar 

  8. Chow J (2002) Probiotics and prebiotics: a brief overview. J Ren Nutr 12:76–86

    Article  Google Scholar 

  9. Pérez, RA (2002) Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry. J Agric Food Chem 50:2633–2637

    Article  Google Scholar 

  10. Terrab A, Gonzále MML, González AG et al (2003) Characterisation of Moroccan unifloral honeys using multivariate analysis. Eur Food Res Technol 218:88–95

    Article  CAS  Google Scholar 

  11. Martos I, Ferreres F, Yao L et al (2000) Flavonoids in monospecific Eucalyptus honeys from Australia. J Agric Food Chem 48:4744–4748

    Article  CAS  Google Scholar 

  12. Tomas-Barberán FA, Martos I, Ferreres F et al (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496

    Article  Google Scholar 

  13. Dimitrova B, Gevrenova R, Anklam E (2007) Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochem Anal 18:24–32

    Article  CAS  Google Scholar 

  14. Molan PC, Betts JA (2004) Clinical usage of honey as a wound dressing: an update. J Wound Care 13:353–356

    CAS  Google Scholar 

  15. Patzold R, Bruckner H (2006) Gas chromatographic detection of D-amino acids in natural and thermally treated bee honeys and studies on the mechanism of their formation as result of the Maillard reaction. Eur Food Res Technol 223:347–354

    Article  Google Scholar 

  16. Pérez AR, Iglesias MT, Pueyo E et al (2007) Amino acid composition and antioxidant capacity of Spanish honeys. J Agric Food Chem 55:360–365

    Article  Google Scholar 

  17. González-Paramás AM, Gómez-Bárez JA, Cordón Marcos C et al (2006) HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem 95:148–156

    Article  Google Scholar 

  18. Heitkamp K, Busch-Stockfisch M (1986) Pro und Kontra Honig-Sind Aussagen zur Wirkung des Honigs “wissenschaftlich hinreichend gesichert”? Z Lebensm Unters Forsch 182:279–286

    Article  CAS  Google Scholar 

  19. Persano-Oddo L, Piro R (2004) Main European unifloral honeys: descriptive sheets. Apidologie 35:38–81

    Article  Google Scholar 

  20. Jeffrey AE, Echazarreta CM (1996) Medical uses of honey. Rev Biomed 7:43–49

    Google Scholar 

  21. Moreira RFA, De Maria CAB (2001) Glícidos no mel. Quim Nova 24:516–525

    CAS  Google Scholar 

  22. Azeredo LC, Azeredo MAA, Souza SR, Dutra VML (2003) Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chem 80:249–254

    Article  CAS  Google Scholar 

  23. Iglesias MT, de Lorenzo C, Polo MC et al (2004) Usefulness of amino acids composition to discriminate between honeydew and floral honeys. Application to honeys from a small geographic area. J Food Agric Chem 52:84–89

    Article  CAS  Google Scholar 

  24. Hermosín I, Chicón RM, Cabezudo MD (2003) Free amino acid composition and botanical origin of honey. Food Chem 83:263–268

    Article  Google Scholar 

  25. Bengsch E (1992) Connaissance du miel. Des oligo-éléments pour la santé. Rev franc apicult 569:383–386

    Google Scholar 

  26. Conti ME (2000) Lazio region (central Italy) honeys: a survey of mineral content and typical quality parameters. Food Control 11:459–463

    Article  CAS  Google Scholar 

  27. Stocker A, Schramel P, Kettrup A, Bengsch E (2005) Trace and mineral elements in royal jelly and homeostatic effects. J Trace Elem Med Biol 19:183–189

    Article  CAS  Google Scholar 

  28. Careri M, Mangia A, Barbieri G et al (1994) Sensory property relationship to chemical data italian-type dry-cured ham. J Food Sci 27:491–495

    Google Scholar 

  29. Anklam E, Radovic BS (2001) Suitable analytical methods for determining the origin of European honey. Am Lab 7:60–64

    Google Scholar 

  30. Bogdanov S, Ruoff K, Persano Oddo L (2007) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35:4–17

    Article  Google Scholar 

  31. Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E (2007) A review of volatile analytical methods for determining the botanical origin of honey. Food Chem 103:1032–1043

    Article  CAS  Google Scholar 

  32. Alissandrakis E, Tarantilis PA, Harizanis PC, Polissiou M (2005) Evaluation of four isolation techniques for honey aroma compounds. J Sci Food Agric 85:91–97

    Article  CAS  Google Scholar 

  33. Alissandrakis E, Tarantalis PA, Harizanis PC, Polissiou M (2007) Aroma investigation of unifloral Greek citrus honey using solidphase microextraction coupled to gas chromatographic-mass spectrometric analysis. Food Chem 100:396–404

    Article  CAS  Google Scholar 

  34. Piasenzotto L, Gracco L, Conte L (2003) Solid phase microextraction (SPME) applied to honey quality control. J Sci Food Agric 83:1037–1044

    Article  CAS  Google Scholar 

  35. Martos I, Ferreres F, Tomás-Barberán FA (2000) Identification of flavonoid markers for the botanical origin of Eucalyptus honey. J Food Agric Chem 48:1498–1502

    Article  CAS  Google Scholar 

  36. Tomas-Barberán FA, Martos I, Ferreres F et al (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496

    Article  Google Scholar 

  37. Amiot MJ, Aubert S, Gonnet M, Tacchini M (1989) Les composés phénoliques des miels: étude préliminaire sur l’identification et la quantification par familles. Apidologie 20:115–125

    Article  CAS  Google Scholar 

  38. Ferreres F, Tomas-Barberan FA, Gil MI, Tomas-Lorente F (1991) An HPLC technique for flavonoid analysis in honey. J Sci Food Agric 56:49–56

    Article  CAS  Google Scholar 

  39. Gil MI, Ferreres F, Ortiz A, Subra E, Tomas-Barberan FA (1995) Plant phenolic metabolites and floral origin of rosemary honey. J Agric Food Chem 43:2833–2838

    Article  CAS  Google Scholar 

  40. Vela L, Lorenzo C, Pérez RA (2007) Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J Sci Food Agric 87:1069–1075

    Article  CAS  Google Scholar 

  41. Truchado P, Ferreres F, Bortolotti L et al (2008) Nectar flavonol rhamnosides are markers of acacia (Robinia pseudacacia) honey. J Food Agric Chem 56:8815–8824

    Article  CAS  Google Scholar 

  42. Michalkiewicz A, Biesaga M, Pyrzynska K (2008) Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J Chrom A 1187:18–24

    Article  CAS  Google Scholar 

  43. Estevinho L, Pereira AP, Moreira L et al (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46:3774–3779

    Article  CAS  Google Scholar 

  44. Ferreres F, Tomas-Barberan FA, Gil MI, Tomas-Lorente F (1991) An HPLC technique for flavonoid analysis in honey. J Sci Food Agric 56:49–56

    Article  CAS  Google Scholar 

  45. Gil MI, Ferreres F, Ortiz A et al (1995) Plant phenolic metabolites and floral origin of rosemary honey. J Agric Food Chem 43:2833–2838

    Article  CAS  Google Scholar 

  46. Tomás-Barberán FA, Martos I, Ferreres F et al (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496

    Article  Google Scholar 

  47. Bogdanov S (1997) Nature and origin of the antibacterial substances in honey. Lebensm-Wiss Technol 30:748–753

    Article  CAS  Google Scholar 

  48. Weston RJ, Mitchell KR, Allen KL (1999) Antibacterial phenolic components of New Zealand manuka honey. Food Chem 64:295–301

    Article  CAS  Google Scholar 

  49. Taormina PJ, Niemira BA, Beuchat LR (2001) Inhibitory activity of honey against food-borne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol 69:217–225

    Article  CAS  Google Scholar 

  50. Allen KL, Molan PC, Reid GM (1991) A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 43:817–822

    CAS  Google Scholar 

  51. Wahdan HAL (1998) Causes of the antimicrobial activity of honey. Infection 26:26

    Article  CAS  Google Scholar 

  52. Weston RJ, Brocklebank LK, Lu Y (2000) Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem 70:427–435

    Article  CAS  Google Scholar 

  53. Fahey JW, Stephenson KK (2002) Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): A potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem 50:7472–7476

    Article  CAS  Google Scholar 

  54. Zeina B, Zohra BI, al Assad S (1997) The effects of honey on Leishmania parasites: an in vitro study. Trop Doct 27[Suppl 1]:36–38

    Google Scholar 

  55. Kilicoglu B, Kismet K, Koru O et al (2006) The scolicidal effects of honey. Adv Ther 23:1077–1083

    Article  Google Scholar 

  56. Russell, KM, Molan PC, Wilkins AL, Holland PT (1990) Identification of some antibacterial constituents of New Zealand manuka honey. J Agric Food Chem 38:10–13

    Article  CAS  Google Scholar 

  57. Gheldof N, Engeseth NJ (2002) Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem 50:3050–3055

    Article  CAS  Google Scholar 

  58. Gheldof N, Wang XH, Engeseth NJ (2003) Buckwheat honey increases serum antioxidant capacity in humans. J Agric Food Chem 51:1500–1505

    Article  CAS  Google Scholar 

  59. Beretta G, Granata P, Ferrero M, Orioli M, Facino RM (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 533:185–191

    Article  CAS  Google Scholar 

  60. D’Arcy BR (2005) Antioxidants in Australian floral honeys — Identification of health enhancing nutrient components. RIRDC Publication No 05/040

  61. Gheldof N, Wang XH, Engeseth NJ (2002) Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 50:5870–5877

    Article  CAS  Google Scholar 

  62. Frankel S, Robinson GE, Berenbaum MR (1998) Antioxidant capacity and correlated characteristics of 14 unifloral honeys. J Apic Res 37:27–31

    CAS  Google Scholar 

  63. Aljadi AM, Kamaruddin MY (2004) Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem 85:513–518

    Article  CAS  Google Scholar 

  64. Inoue K, Murayarna S, Seshimo F et al (2005) Identification of phenolic compound in manuka honey as specific superoxide anion radical scavenger using electron spin resonance (ESR) and liquid chromatography with coulometric array detection. J Sci Food Agric 85:872–878

    Article  CAS  Google Scholar 

  65. Blasa M, Candiracci M, Accorsi A (2006) Raw Millefiori honey is packed full of antioxidants. Food Chem 97:217–222

    Article  CAS  Google Scholar 

  66. Nagai T, Inoue R, Kanamori N et al (2006) Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chem 97:256–262

    Article  CAS  Google Scholar 

  67. Al-Waili NS (2003) Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. J Med Food 6:135–140

    Article  CAS  Google Scholar 

  68. Meda A, Lamien CE, Romito M et al (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91:571–577

    Article  CAS  Google Scholar 

  69. McKibben J, Engeseth NJ (2002) Honey as a protective agent against lipid oxidation in ground turkey. J. Agric Food Chem 50:592–595

    Article  CAS  Google Scholar 

  70. Aljadi AM, Kamaruddin MY (2004) Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem 85:513–518

    Article  CAS  Google Scholar 

  71. Bertoncelj J, Dobersěk U, Jamnik M, Golob T (2007) Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem 105:822–828

    Article  CAS  Google Scholar 

  72. Baltrušaitė V, Rimantas P, Čksterytė V (2007) Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem 101:502–514

    Article  Google Scholar 

  73. Schramm DD, Karim M, Schrader HR et al (2003) Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem 51:1732–1735

    Article  CAS  Google Scholar 

  74. Beretta G, Orioli M, Facino RM (2007) Antioxidant and radical scavenging activity of honey in endothelial cell culture (EA.hy926). Planta Med 73:1182–1189.

    Article  CAS  Google Scholar 

  75. Molan PC (2001) Potential of honey in the treatment of wounds and burns. Am J Clin Dermatol 2:9–13

    Article  Google Scholar 

  76. Hamzaoglu I, Saribeyoglu K, Durak H et al (2000) Protective covering of surgical wounds with honey impedes tumor implantation. Arch Surg 135–142

  77. Mobarok Ali ATM, Al-Swayeh AO (1997) Natural honey prevents ethanol.induced increased vascular permeability changes in the rat stomach. J Ethnopharmacol 55:231–239

    Article  CAS  Google Scholar 

  78. Bang LM, Buntting C, Molan P (2003) The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J Altern Compl Med 9:267–273

    Article  Google Scholar 

  79. Lopez-Lazaro M (2006) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252:1–8

    Article  Google Scholar 

  80. Facino RM (2001) Honey in tumor surgery. Arch Surg 136:600

    Article  Google Scholar 

  81. Michaluart P, Masferrer JL, Carothers AM et al (1999) Inhibitory effects of caffeic acid phenethyl esther on the activity and expression of cyclooxygenase-2 in human oral epithelial cell and in rat model of inflammation. Cancer Res 59:2347–2352

    CAS  Google Scholar 

  82. Greten FR, Eckmann L, Greten TF et al (2004) IKK links inflammation and tumorigenesis in mouse model of colitis associated cancer. Cell 118:285–296

    Article  CAS  Google Scholar 

  83. Wang XH, Andrae L, Engeseth NJ (2002) Antimutagenic effect of various honeys and sugars against Trp-p-1. J Agric Food Chem 50:6923–6928

    Article  CAS  Google Scholar 

  84. Orsolic N, Basic I (2004) Honey as a cancer-preventive agent. Periodicum Biolog 106:397–401

    Google Scholar 

  85. Swellam T, Miyanaga N, Onozawa M et al (2003) Antineoplastic activity of honey in an experimental bladder cancer implantation model: in vivo and in vitro studies. Int J Urol 10:213–219

    Article  CAS  Google Scholar 

  86. Al-Waili NS, Boni NS (2003) Natural honey lowers plasma prostaglandin concentrations in normal individuals. J Med Food 6:129–133

    Article  CAS  Google Scholar 

  87. Bilsel Y, Bugra D, Yamaner S et al (2002) Could honey have a place in colitis therapy? Effects of honey, prednisolone, and disulfiram on inflammation, nitric oxide, and free radical formation. Dig Surg 19:306–311

    Article  CAS  Google Scholar 

  88. Jeddar A, Kharsany A, Ramsaroop UG et al (1985) The antibacterial action of honey: an in vitro study. S Afr Med J 67:257–258

    CAS  Google Scholar 

  89. Osato MS, Reddy SG, Graham DY (1999) Osmotic effect of honey on growth and viability of Helicobacter pylori. Dig Dis Sci 44:462–464

    Article  CAS  Google Scholar 

  90. Ali AT, Chowdhury MN, Al-Humayyd MS (1999) Inhibitory effect of natural honey on Helicobacter pylori. Tropical Gastroenterol 12:139–143

    Google Scholar 

  91. Salem SN (1981) Treatment of gastroenteritis by the use of honey. Islam Med 1:358–362

    Google Scholar 

  92. Haffejee IE, Moosa A (1985) Honey in the treatment of infantile gastroenteritis. Br Med J 290:1866–1867

    Article  CAS  Google Scholar 

  93. World Health Organisation (1976) Treatment and prevention of dehydration in diarrhoeal diseases. A guide for use at the primary level. WHO, Geneva, pp 1–13

    Google Scholar 

  94. Chatterjee A, Mahalanabis D, Jalan KN (1978) Oral rehydration in infantile diarrhea. Controlled trial of a low sodium glucose electrolyte solution. Arch Dis Child 53:284–289

    Article  CAS  Google Scholar 

  95. Sanz ML, Polemis N, Morales V et al (2005) In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem 53:2914–2921

    Article  CAS  Google Scholar 

  96. Yun YW (1996) Fructooligosaccharides: occurrence, preparation and application. Enzyme Microb Technol 19:107–117

    Article  CAS  Google Scholar 

  97. Kajiwara S, Gandhi H, Ustunol Z (2002) Effect of honey on the growth of and acid production by human intestinal Bifidobacterium spp: an in vitro comparison with commercial oligosaccharides and inulin. J Food Prot 65:214–218

    CAS  Google Scholar 

  98. Yaghoobi N, Al-Waili N, Ghayour-Mobarhan M et al (2008) Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. Sci World J 20:463–9

    Google Scholar 

  99. Al-Waili NS (2004) Natural honey lowers plasma glucose, Creactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food 7:100–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Battino.

About this article

Cite this article

Alvarez-Suarez, J.M., Tulipani, S., Romandini, S. et al. Contribution of honey in nutrition and human health: a review. Mediterr J Nutr Metab 3, 15–23 (2010). https://doi.org/10.1007/s12349-009-0051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12349-009-0051-6

Keywords

Navigation