Mediterranean Journal of Nutrition and Metabolism

, Volume 2, Issue 2, pp 111–118 | Cite as

Effects of visceral fat accumulation in obesity and type 2 diabetes

  • Giuseppe Fatati
  • Eva Mirri
  • Stefano Coaccioli


Type 2 diabetes has become the most frequently encountered metabolic disorder in the world and obesity, meaning visceral adiposity, is the core problem. In the abdominal adipose tissue, insulin resistance (IR) reduces the antilipolytic effect of insulin, which in turn leads to reduced glucose uptake and increased release of free fatty acids (FFAs) and glycerol. Chronic exposure of beta cells to elevated FFA levels causes detrimental consequences such as increased insulin secretion at low glucose concentrations, decreased proinsulin biosynthesis, depletion of insulin reserves and reduced response to concentrations of glucose stimulus. Adipose peroxisome proliferator-activated receptors (PPAR)-γ appears to be an essential mediator for the maintenance of whole-body insulin sensitivity that protects non-adipose tissue against lipid overload. Current data suggest that PPAR-γ-activating ligands improve adipose tissue function, and may prevent the progression of IR to diabetes and also endothelial dysfunction to atherosclerosis. Links between environmental influences, the layout of visceral fat, the PPARs, the adiponectin and the adipocytokines still need to be completely clarified.


Type 2 diabetes Obesity Visceral adiposity Peroxisome proliferator-activated receptors PPARs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefGoogle Scholar
  2. 2.
    Mohan V, Shanthirani S, Deepa R et al (2001) Intra-urban differences in the prevalence of the metabolic syndrome in Southern India — the Chennai Urban Population study. Diabet Med 18:280–287CrossRefGoogle Scholar
  3. 3.
    Meigs JB, D’Agostino RB, Wilson PW et al (1997) Risk variable clustering in the insulin resistance syndrome. The Framingham Offspring Study Diabetes 46:1594–1600Google Scholar
  4. 4.
    Langendonk JG, Kok P, Frölich M et al (2006) Decrease in visceral fat following diet-induced weight loss in upper body compared to lower body obese premenopausal women. Eur J Intern Med 17:465–469CrossRefGoogle Scholar
  5. 5.
    McGarry JD (2002) Banting Lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18CrossRefGoogle Scholar
  6. 6.
    McGarry JD (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770CrossRefGoogle Scholar
  7. 7.
    Goldstein BJ (2003) Insulin resistance: from benign to type 2 diabetes mellitus. Rev Cardiovasc Med 4[Suppl 6]:S3–S10Google Scholar
  8. 8.
    Sinha R, Teague B, Tamborlane WV et al (2002) Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 346:802–810CrossRefGoogle Scholar
  9. 9.
    Bhargava SK (2004) Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 350:865–876CrossRefGoogle Scholar
  10. 10.
    Wing SS (2008) The UPS in diabetes and obesity. BMC Biochem 9[Suppl 1]:S6–S15CrossRefGoogle Scholar
  11. 11.
    Palaniappan L, Camethon MR, Wang Y et al (2004) Predictors of the incident metabolic syndrome in adults. Diabetes Care 27:788–793CrossRefGoogle Scholar
  12. 12.
    Hayashi T, Boyko EJ, McNeely MJ et al (2008) Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 57:1269–1275CrossRefGoogle Scholar
  13. 13.
    Nieves DJ, Cnop M, Retzlaff B et al (2003) The atherogenic lipoprotein profile associated with obesity and insulin resistance is largely attributable to intra-abdominal fat. Diabetes 52:172–179CrossRefGoogle Scholar
  14. 14.
    Jung C, Fischer N, Fritzenwanger M et al (2008) Association of waist circumference, traditional cardiovascular risk factors, and stromal-derived factor-1 in adolescents. Pediatr Diabetes. [Epub ahead of print] PMID: 19076302 [PubMed — as supplied by publisher]Google Scholar
  15. 15.
    Meigs JB, Rutter MK, Sullivan LM et al (2007) Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care 30:1219–1225CrossRefGoogle Scholar
  16. 16.
    Turner NC, Clapham JC (1998) Insulin resistance, impaired glucose tolerance and non-insulin dependent diabetes, pathologic mechanism and treatment: current status and therapeutic possibility. Drug Res 51:36–94Google Scholar
  17. 17.
    Després JP (2007) Cardiovascular disease under the influence of excess visceral fat. Crit Pathw Cardiol 6:51–59Google Scholar
  18. 18.
    Ferrannini E, Balkau B, Coppack SW et al; RISC Investigators (2007) Insulin resistance, insulin response, and obesity as indicators of metabolic risk J Clin Endocrinol Metab 92:2885–2892CrossRefGoogle Scholar
  19. 19.
    Zák A, Slabý A (2008) Atherogenic dyslipidemia and the metabolic syndrome: pathophysiological mechanisms. Cas Lek Cesk 147:459–470Google Scholar
  20. 20.
    Stein DT, Szczepaniak L, Garg A et al (1997) Intramuscular lipid is increased in subjects with congenital generalized lipodystrophy (Abstract). Diabetes 46[Suppl 1]:242AGoogle Scholar
  21. 21.
    Randle PI, Kerbey AL, Espinal J (1988) Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Res 4:623–628CrossRefGoogle Scholar
  22. 22.
    Jacob S, Machann J, Ren K et al (1999) Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48:1113–1119CrossRefGoogle Scholar
  23. 23.
    Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176CrossRefGoogle Scholar
  24. 24.
    Gabriely I, Ma XH, Yang XM et al (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging. Diabetes 51:2951–2958CrossRefGoogle Scholar
  25. 25.
    Greco VA, Mingrone G, Giancaterini A et al (2002) Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes 51:144–151CrossRefGoogle Scholar
  26. 26.
    Sugita H, Fujimoto M, Yasukawa T et al (2005) Inducible nitricoxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J Biol Chem 280:14203–14211CrossRefGoogle Scholar
  27. 27.
    Cinti S (2003) Aspetti morfofunzionali dell’organo adiposo: dal modello animale verso una terapia razionale dell’obesità. G Ital Diabetol Metab 23:77–84Google Scholar
  28. 28.
    Tataranni P, Ortega E (2005) A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 54:917–927CrossRefGoogle Scholar
  29. 29.
    Cnop M, Landchild MJ, Vidal J et al (2002) The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations. Diabetes 51:1005–1015CrossRefGoogle Scholar
  30. 30.
    Nogueiras R, Gualillo O, Caminos J et al (2003) Regulation of resistin by gonadal, thyroid hormone and nutritional status. Obes Res 11:408–414CrossRefGoogle Scholar
  31. 31.
    Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312CrossRefGoogle Scholar
  32. 32.
    Tschritter O, Fritsche A, Thamer C et al (2003) Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52:239–243CrossRefGoogle Scholar
  33. 33.
    Festa A, D’Agostino RB, Howard C et al (2000) Chronic subclinical inflammation as part of the insulin-resistance syndrome. The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 201:42–47Google Scholar
  34. 34.
    Calvani M, Scarfone A, Granato L et al (2004) Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes 53:939–947CrossRefGoogle Scholar
  35. 35.
    Knobler H, Benderly M, Boyko V et al (2006) Adiponectin and the development of diabetes in patients with coronary artery disease and impaired fasting glucose. Eur J Endocrinol 154:87–92CrossRefGoogle Scholar
  36. 36.
    Mather KJ, Funahashi T, Matsuzawa Y et al; the Diabetes Prevention Program (2008) Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program. Diabetes 57:980–986CrossRefGoogle Scholar
  37. 37.
    Menzaghi C, Trischitta V, Doria A (2007) Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 56:1198–1209CrossRefGoogle Scholar
  38. 38.
    Qiao L, Zou C, van der Westhuyzen DR, Shao J (2008) Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 57:1824–1833CrossRefGoogle Scholar
  39. 39.
    Sharma AM, Staels B (2007) Peroxisome proliferator-activated receptor g and adipose tissue: understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92:386–395CrossRefGoogle Scholar
  40. 40.
    Medina-Gomez G, Gray SL, Yetukuri L et al (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. Plos Genet 3:e64CrossRefGoogle Scholar
  41. 41.
    Nicholson AC, Febbraio M, Han J et al (2000) CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci 902:128–131CrossRefGoogle Scholar
  42. 42.
    Fernandez AZ (2008) Peroxisome proliferator-activated receptors in the modulation of the immune/inflammatory response in atherosclerosis. PPAR Res 2008:285842Google Scholar
  43. 43.
    Tsuchida A, Yamauchi T, Takekawa S et al (2005) Peroxisome proliferator-activated receptor (PPAR) alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue. Diabetes 54:3358–3370CrossRefGoogle Scholar
  44. 44.
    Diete-Schroeder D, Sell H, Uhlig M et al (2005) Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes 54:2003–2011CrossRefGoogle Scholar
  45. 45.
    Marx N, Duez H, Fruchart JC, Staels B (2004) Peroxisome proliferator-activated receptors and atherogenesis. Circ Res 94:1168–1179CrossRefGoogle Scholar
  46. 46.
    Auwers J (1999) PPAR-gamma, the ultimate thrifty gene. Diabetologia 42:1033–1049CrossRefGoogle Scholar
  47. 47.
    Fatati G, Mirri E (2007) La syndrome metabolica: dalla diagnosi al trattamento. In Fatati G (ed) Dietetica e Nutrizione: clinica, terapia e organizzazione. Il Pensiero Scientifico Editore, Rome, pp 201–220Google Scholar
  48. 48.
    Valerio A, Cardile A, Cozzi V et al (2006) TNF-a downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 116:2791–2798Google Scholar
  49. 49.
    Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 14:840–846CrossRefGoogle Scholar
  50. 50.
    Shimabukuro M, Zhou YT, Levi M, Unger RH (1998) Fatty acidinduced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A 95:2498–2502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  1. 1.Diabetology, Dietetics and Clinical Nutrition UnitSanta Maria HospitalTerniItaly
  2. 2.Department of Internal MedicineSchool of Medicine Perugia UniversityPerugiaItaly

Personalised recommendations