Skip to main content
Log in

On a Coupled System of Nonlinear Generalized Fractional Differential Equations with Nonlocal Coupled Riemann–Stieltjes Boundary Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study a new class of coupled systems of nonlinear generalized fractional differential equations complemented with coupled nonlocal Riemann–Stieltjes and generalized fractional integral boundary conditions. The nonlinearities also include the lower order generalized fractional derivatives of the unknown functions. We apply the Banach contraction mapping principle and Leray–Schauder alternative to derive the desired results. An illustrative example is also discussed. The results presented in this work are novel in the given configuration and yield some new results as special cases (for details, see the Conclusion section).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nyamoradi, N., Ahmad, B.: Generalized fractional differential systems with Stieltjes boundary conditions. Qual. Theory Dyn. Syst. 22(6), 18 (2023)

    MathSciNet  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  3. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  5. Sabatier, J., Agarwal, O.P., Ttenreiro Machado, J.A.: Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, New York, Springer (2007)

    Google Scholar 

  6. Wang, S., Xu, M.: Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 10, 1087–1096 (2009)

    MathSciNet  Google Scholar 

  7. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  8. Jiao, Z., Chen, Y.Q., Podlubny, I.: Distributed-order Dynamic Systems. Springer, New York (2012)

    Google Scholar 

  9. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–11399 (1999)

    Google Scholar 

  10. Hartley, T.T., Lorenzo, C.F., Killory, Q.H.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS-I 42, 485–490 (1995)

    Google Scholar 

  11. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Google Scholar 

  12. Ge, Z.M., Ou, C.Y.: Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 35, 705–717 (2008)

    Google Scholar 

  13. Faieghi, M., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72, 301–309 (2013)

    MathSciNet  Google Scholar 

  14. Ge, Z.M., Jhuang, W.R.: Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 33, 270–289 (2007)

    Google Scholar 

  15. Zhang, F., Chen, G., Li, C., Kurths, J.: Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A 371, 20120155 (2013)

    MathSciNet  Google Scholar 

  16. Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Therm. Stress 30, 889–896 (2007)

    Google Scholar 

  17. Povstenko, Y.Z.: Fractional Thermoelasticity. Springer, New York (2015)

    Google Scholar 

  18. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    MathSciNet  Google Scholar 

  19. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Google Scholar 

  20. Li, P., Gao, R., Xu, C., Ahmad, S., Li, Y., Akgul, A.: Bifurcation behavior and \({{\rm PD}}^\gamma \) control mechanism of a fractional delayed genetic regulatory model. Chaos Solitons Fractals 168, 113219 (2023)

    MathSciNet  Google Scholar 

  21. Li, P., Gao, R., Xu, C., Li, Y., Akgul, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system. Chaos Solitons Fractals 166, 112975 (2023)

    MathSciNet  Google Scholar 

  22. Li, P., Gao, R., Xu, C., Lu, Y., Shang, Y.: Dynamics in a fractional order predator-prey model involving Michaelis–Menten type functional responses and both unequal delays. Fractals 31(04), 2340070 (2024)

    Google Scholar 

  23. Chatterjee, A.N., Ahmad, B.: A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos Solitons Fractals 147, 110952 (2021)

    MathSciNet  Google Scholar 

  24. Mahasa, K.J., Ouifki, R., Eladdadi, A., de Pillis, L.: Mathematical model of tumor-immune surveillance. J. Theoret. Biol. 404, 312–330 (2016)

    MathSciNet  Google Scholar 

  25. Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)

    MathSciNet  Google Scholar 

  26. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 83, 234–241 (2016)

    MathSciNet  Google Scholar 

  27. Alsaedi, A., Ahmad, B., Alruwaily, Y., Ntouyas, S.K.: On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann–Stieltjes type integro-multipoint boundary conditions. Adv. Differ. Equ. 474, 19 (2019)

    MathSciNet  Google Scholar 

  28. Alruwaily, Y., Ahmad, B., Ntouyas, S.K., Alzaidi, A.S.M.: Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann–Stieltjes integro-multipoint boundary conditions. Fractal Fract. 6, 123 (2022). https://doi.org/10.3390/fractalfract6020123

    Article  Google Scholar 

  29. Ahmad, B., Alghanmi, M., Alsaedi, A.: Existence results for a nonlinear coupled system involving both Caputo and Riemann–Liouville generalized fractional derivatives and coupled integral boundary conditions. Rocky Mountain J. Math. 50, 1901–1922 (2020)

    MathSciNet  Google Scholar 

  30. Belmor, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral conditions. J. Taibah Univ. Sci. 14, 114–123 (2020)

    Google Scholar 

  31. Asawasamrit, S., Thadang, Y., Ntouyas, S.K., Tariboon, J.: Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann–Stieltjes fractional integral boundary conditions. Axioms 10(3), 130 (2021). https://doi.org/10.3390/axioms10030130

    Article  Google Scholar 

  32. Belmor, S., Jarad, F., Abdeljawad, T., Alqudah, M.A.: On fractional differential inclusion problems involving fractional order derivative with respect to another function. Fractals 28, 2040002 (2020)

    Google Scholar 

  33. Ahmad, B., Ntouyas, S.K.: Nonlocal Nonlinear Fractional-Order Boundary Value Problems. World Scientific, Singapore (2021)

    Google Scholar 

  34. Agarwal, R.P., Assolami, A., Alsaedi, A., Ahmad, B.: Existence results and Ulam–Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions. Qual. Theory Dyn. Syst. 21, 125 (2022)

    MathSciNet  Google Scholar 

  35. Waheed, H., Zada, A., Rizwan, R., Popa, I.L.: Hyers–Ulam stability for a coupled system of fractional differential equation with \(p\)-Laplacian operator having integral boundary conditions. Qual. Theory Dyn. Syst. 21, 92 (2022)

    MathSciNet  Google Scholar 

  36. Alghanmi, M., Agarwal, R.P., Ahmad, B.: Existence of solutions for a coupled system of nonlinear implicit differential equations involving \(\varrho \)-fractional derivative with anti periodic boundary conditions. Qual. Theory Dyn. Syst. 23(6), 17 (2024)

    MathSciNet  Google Scholar 

  37. Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226, 3457–3471 (2017)

    Google Scholar 

  38. Adjabi, Y., Jarad, F., Abdeljawad, T.: On generalized fractional operators and a Gronwall type inequality with applications. Filomat 31(17), 5457–5473 (2017)

    MathSciNet  Google Scholar 

  39. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2015)

    MathSciNet  Google Scholar 

  40. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6, 1–15 (2014)

    MathSciNet  Google Scholar 

  41. Lupinska, B., Odzijewicz, T.: A Lyapunov-type inequality with the Katugampola fractional derivative. Math. Methods Appl. Sci. 41, 8985–8996 (2018)

    MathSciNet  Google Scholar 

  42. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 33, 64–69 (2009)

    MathSciNet  Google Scholar 

  43. Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2003)

    Google Scholar 

  44. Ahmad, B., Batarfi, H., Nieto, J.J., et al.: Projectile motion via Riemann–Liouville calculus. Adv. Differ. Equ. 2015, 63 (2015)

    MathSciNet  Google Scholar 

  45. Kirane, M., Torebek, B.T.: Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differential equations. Fract. Calc. Appl. Anal. 22, 358–378 (2019)

    MathSciNet  Google Scholar 

  46. Ma, L.: On the kinetics of Hadamard-type fractional differential systems. Fract. Calc. Appl. Anal. 23, 553–570 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their constructive remarks on their manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed to this manuscript and reviewed it.

Corresponding author

Correspondence to Bashir Ahmad.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Alsaedi, A. & Aljahdali, A.S. On a Coupled System of Nonlinear Generalized Fractional Differential Equations with Nonlocal Coupled Riemann–Stieltjes Boundary Conditions. Qual. Theory Dyn. Syst. 23, 215 (2024). https://doi.org/10.1007/s12346-024-01077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01077-x

Keywords

Mathematics Subject Classification

Navigation